Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Parameter Inference in Non-linear Dynamical Systems via Recurrence Plots and Convolutional Neural Networks (2410.23408v2)

Published 30 Oct 2024 in nlin.CD

Abstract: Inferring control parameters in non-linear dynamical systems is an important task in analysing general dynamical behaviours, particularly in the presence of inherently deterministic chaos. Traditional approaches often rely on system-specific models and involve heavily parametrised formulations, which can limit their general applicability. In this study, we present a methodology that employs recurrence plots as structured representations of non-linear trajectories, which are then used to train convolutional neural networks to infer the values of the control parameter associated with the analysed trajectories. We focus on two representative non-linear systems, namely the logistic map and the standard map, and show that our approach enables accurate estimation of the parameters governing their dynamics. When compared to regression models trained directly on raw time-series data, the use of recurrence plots yields significantly more robust results. Although the methodology does not aim to predict future states explicitly, we argue that accurate parameter inference, when combined with predetermined initial conditions, enables the reconstruction of a system's evolution due to its deterministic nature. These findings highlight the potential of recurrence-based learning frameworks for the automated identification and characterisation of non-linear dynamical behaviours.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. D. E. Stewart and R. L. Dewar, Non-linear dynamics, in Complex Systems, edited by T. R. J. Bossomaier and D. G. Green (Cambridge University Press, 2000) p. 167–248.
  2. G. Zaslavsky, Weak Chaos and Quasi-Regular Patterns, Cambridge Nonlinear Science Series (Cambridge University Press, 1992).
  3. A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic Dynamics (Springer Berlin Heidelber, 1992).
  4. E. Ott, Chaos in Dynamical Systems (Cambridge University Press, 2002).
  5. G. Zaslavsky, Chaos in Dynamic Systems (Harwood Academic Publishers, 1985).
  6. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts in Applied Mathematics (Springer New York, 2003).
  7. A. Shrestha and A. Mahmood, Review of Deep Learning Algorithms and Architectures, IEEE Access 7, 53040 (2019).
  8. S. Cong and Y. Zhou, A review of convolutional neural network architectures and their optimizations, Artif. Intell. Rev. 56, 1905 (2023).
  9. J. Nam and J. Kang, Classification of Chaotic Signals of the Recurrence Matrix Using a Convolutional Neural Network and Verification through the Lyapunov Exponent, Appl. Sci. 11, 77 (2020).
  10. C. L. Webber Jr and J. P. Zbilut, Recurrence quantification analysis of nonlinear dynamical systems, Tutorials in contemporary nonlinear methods for the behavioral sciences 94, 26 (2005).
  11. N. Marwan and K. H. Kraemer, Trends in recurrence analysis of dynamical systems, The European Physical Journal Special Topics 232, 5 (2023).
  12. C. Webber and N. Marwan, Recurrence Quantification Analysis – Theory and Best Practices (Springer, 2015).
  13. B. Goswami, A brief introduction to nonlinear time series analysis and recurrence plots, Vibration 2, 332 (2019).
  14. T. D. Pham, Fuzzy recurrence plots, in Fuzzy Recurrence Plots and Networks with Applications in Biomedicine (Springer International Publishing, Cham, 2020) pp. 29–55.
  15. M. S. Palmero, I. L. Caldas, and I. M. Sokolov, Finite-time recurrence analysis of chaotic trajectories in hamiltonian systems, Chaos: An Interdisciplinary Journal of Nonlinear Science 32, 113144 (2022).
  16. E. D. Lorenz, The problem of deducing the climate from the governing equations, Tellus A: Dynamic Meteorology and Oceanography 16, 1 (1964).
  17. R. May, Simple mathematical models with very complicated dynamics, Nature 26, 457 (1976).
  18. B. V. Chirikov, Research concerning the theory of non-linear resonance and stochasticity, Tech. Rep. (CM-P00100691, 1969).
  19. B. V. Chirikov, A universal instability of many-dimensional oscillator systems, Phys. Rep. 52, 263 (1979).
  20. R. MacKay and J. Meiss, Hamiltonian Dynamical Systems: A REPRINT SELECTION (CRC Press, 1987).
  21. J. M. Greene, A method for determining a stochastic transition, Journal of Mathematical Physics 20, 1183 (1979), https://pubs.aip.org/aip/jmp/article-pdf/20/6/1183/19001735/1183_1_online.pdf .
  22. R. MacKay, A renormalization approach to invariant circles in area-preserving maps, Physica D: Nonlinear Phenomena 7, 283 (1983).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 8 likes.