Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Machine Learning for Robust Identification of Complex Nonlinear Dynamical Systems: Applications to Earth Systems Modeling (2008.05590v1)

Published 12 Aug 2020 in cs.LG and nlin.CD

Abstract: Systems exhibiting nonlinear dynamics, including but not limited to chaos, are ubiquitous across Earth Sciences such as Meteorology, Hydrology, Climate and Ecology, as well as Biology such as neural and cardiac processes. However, System Identification remains a challenge. In climate and earth systems models, while governing equations follow from first principles and understanding of key processes has steadily improved, the largest uncertainties are often caused by parameterizations such as cloud physics, which in turn have witnessed limited improvements over the last several decades. Climate scientists have pointed to Machine Learning enhanced parameter estimation as a possible solution, with proof-of-concept methodological adaptations being examined on idealized systems. While climate science has been highlighted as a "Big Data" challenge owing to the volume and complexity of archived model-simulations and observations from remote and in-situ sensors, the parameter estimation process is often relatively a "small data" problem. A crucial question for data scientists in this context is the relevance of state-of-the-art data-driven approaches including those based on deep neural networks or kernel-based processes. Here we consider a chaotic system - two-level Lorenz-96 - used as a benchmark model in the climate science literature, adopt a methodology based on Gaussian Processes for parameter estimation and compare the gains in predictive understanding with a suite of Deep Learning and strawman Linear Regression methods. Our results show that adaptations of kernel-based Gaussian Processes can outperform other approaches under small data constraints along with uncertainty quantification; and needs to be considered as a viable approach in climate science and earth system modeling.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Nishant Yadav (15 papers)
  2. Sai Ravela (20 papers)
  3. Auroop R. Ganguly (27 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.