Papers
Topics
Authors
Recent
Search
2000 character limit reached

Classification of chaotic time series with deep learning

Published 26 Jul 2019 in eess.SP, cs.LG, math.DS, nlin.CD, physics.comp-ph, and stat.ML | (1908.06848v3)

Abstract: We use standard deep neural networks to classify univariate time series generated by discrete and continuous dynamical systems based on their chaotic or non-chaotic behaviour. Our approach to circumvent the lack of precise models for some of the most challenging real-life applications is to train different neural networks on a data set from a dynamical system with a basic or low-dimensional phase space and then use these networks to classify univariate time series of a dynamical system with more intricate or high-dimensional phase space. We illustrate this generalisation approach using the logistic map, the sine-circle map, the Lorenz system, and the Kuramoto--Sivashinsky equation. We observe that a convolutional neural network without batch normalization layers outperforms state-of-the-art neural networks for time series classification and is able to generalise and classify time series as chaotic or not with high accuracy.

Citations (49)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.