Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

MMMT-IF: A Challenging Multimodal Multi-Turn Instruction Following Benchmark (2409.18216v1)

Published 26 Sep 2024 in cs.AI, cs.CL, and cs.LG

Abstract: Evaluating instruction following capabilities for multimodal, multi-turn dialogue is challenging. With potentially multiple instructions in the input model context, the task is time-consuming for human raters and we show LLM based judges are biased towards answers from the same model. We propose MMMT-IF, an image based multi-turn Q$&$A evaluation set with added global instructions between questions, constraining the answer format. This challenges models to retrieve instructions dispersed across long dialogues and reason under instruction constraints. All instructions are objectively verifiable through code execution. We introduce the Programmatic Instruction Following ($\operatorname{PIF}$) metric to measure the fraction of the instructions that are correctly followed while performing a reasoning task. The $\operatorname{PIF-N-K}$ set of metrics further evaluates robustness by measuring the fraction of samples in a corpus where, for each sample, at least K out of N generated model responses achieve a $\operatorname{PIF}$ score of one. The $\operatorname{PIF}$ metric aligns with human instruction following ratings, showing 60 percent correlation. Experiments show Gemini 1.5 Pro, GPT-4o, and Claude 3.5 Sonnet, have a $\operatorname{PIF}$ metric that drops from 0.81 on average at turn 1 across the models, to 0.64 at turn 20. Across all turns, when each response is repeated 4 times ($\operatorname{PIF-4-4}$), GPT-4o and Gemini successfully follow all instructions only $11\%$ of the time. When all the instructions are also appended to the end of the model input context, the $\operatorname{PIF}$ metric improves by 22.3 points on average, showing that the challenge with the task lies not only in following the instructions, but also in retrieving the instructions spread out in the model context. We plan to open source the MMMT-IF dataset and metric computation code.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com