Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluation of Instruction-Following Ability for Large Language Models on Story-Ending Generation (2406.16356v1)

Published 24 Jun 2024 in cs.CL

Abstract: Instruction-tuned LLMs have achieved remarkable performance across various benchmark tasks. While providing instructions to LLMs for guiding their generations is user-friendly, assessing their instruction-following capabilities is still unclarified due to a lack of evaluation metrics. In this paper, we focus on evaluating the instruction-following ability of LLMs in the context of story-ending generation, which requires diverse and context-specific instructions. We propose an automatic evaluation pipeline that utilizes a machine reading comprehension (MRC) model to determine whether the generated story-ending reflects instruction. Our findings demonstrate that our proposed metric aligns with human evaluation. Furthermore, our experiments confirm that recent open-source LLMs can achieve instruction-following performance close to GPT-3.5, as assessed through automatic evaluation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Rem Hida (4 papers)
  2. Junki Ohmura (3 papers)
  3. Toshiyuki Sekiya (4 papers)