Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Large Language Model Should Understand Pinyin for Chinese ASR Error Correction (2409.13262v1)

Published 20 Sep 2024 in cs.CL, cs.SD, and eess.AS

Abstract: LLMs can enhance automatic speech recognition systems through generative error correction. In this paper, we propose Pinyin-enhanced GEC, which leverages Pinyi, the phonetic representation of Mandarin Chinese, as supplementary information to improve Chinese ASR error correction. Our approach only utilizes synthetic errors for training and employs the one-best hypothesis during inference. Additionally, we introduce a multitask training approach involving conversion tasks between Pinyin and text to align their feature spaces. Experiments on the Aishell-1 and the Common Voice datasets demonstrate that our approach consistently outperforms GEC with text-only input. More importantly, we provide intuitive explanations for the effectiveness of PY-GEC and multitask training from two aspects: 1) increased attention weight on Pinyin features; and 2) aligned feature space between Pinyin and text hidden states.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.