Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 221 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Bridging Speech and Text: Enhancing ASR with Pinyin-to-Character Pre-training in LLMs (2409.16005v1)

Published 24 Sep 2024 in cs.CL, cs.SD, and eess.AS

Abstract: The integration of LLMs with pre-trained speech models has opened up new avenues in automatic speech recognition (ASR). While LLMs excel in multimodal understanding tasks, effectively leveraging their capabilities for ASR remains a significant challenge. This paper presents a novel training approach to enhance LLM performance in ASR tasks. We propose pre-training LLMs on Pinyin embedding sequences, which represent pronunciation features, to generate corresponding Chinese characters. This step enables the LLM to adapt to generating text from pronunciation features before encountering real speech data. Furthermore, we fine-tune the LoRA parameters to enhance the LLM's understanding of speech modality information. In AISHELL-1 corpus, our approach yields a 9.5% relative improvement in ASR tasks compared to the baseline without Pinyi-to-Character pre-training. Additionally, incorporating auxiliary text data for Pinyi-to-Character pre-training further boosts performance, achieving a 19.0% relative improvement.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com