Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Socially Responsible Data for Large Multilingual Language Models (2409.05247v1)

Published 8 Sep 2024 in cs.CL

Abstract: LLMs have rapidly increased in size and apparent capabilities in the last three years, but their training data is largely English text. There is growing interest in multilingual LLMs, and various efforts are striving for models to accommodate languages of communities outside of the Global North, which include many languages that have been historically underrepresented in digital realms. These languages have been coined as "low resource languages" or "long-tail languages", and LLMs performance on these languages is generally poor. While expanding the use of LLMs to more languages may bring many potential benefits, such as assisting cross-community communication and language preservation, great care must be taken to ensure that data collection on these languages is not extractive and that it does not reproduce exploitative practices of the past. Collecting data from languages spoken by previously colonized people, indigenous people, and non-Western languages raises many complex sociopolitical and ethical questions, e.g., around consent, cultural safety, and data sovereignty. Furthermore, linguistic complexity and cultural nuances are often lost in LLMs. This position paper builds on recent scholarship, and our own work, and outlines several relevant social, cultural, and ethical considerations and potential ways to mitigate them through qualitative research, community partnerships, and participatory design approaches. We provide twelve recommendations for consideration when collecting language data on underrepresented language communities outside of the Global North.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com