Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

ELDER: Enhancing Lifelong Model Editing with Mixture-of-LoRA (2408.11869v3)

Published 19 Aug 2024 in cs.CL, cs.AI, and cs.LG

Abstract: LLMs require model editing to efficiently update specific knowledge within them and avoid factual errors. Most model editing methods are solely designed for single-time use and result in a significant forgetting effect in lifelong editing scenarios, where sequential edits are conducted over time. Previous approaches manage sequential edits by freezing original parameters and discretely allocating new parameters for each knowledge update. However, these methods lack robustness to minor input variations due to the discrete mapping between data and parameters. To overcome this challenge, we propose ELDER, a novel approach to create a continuous association between data and adapters. ELDER integrates multiple LoRAs through a router network and is trained to establish a smooth data-adapter association, thereby enhancing the edit robustness and generalization of semantically equivalent inputs. To ensure inputs containing the same knowledge will be processed by the same LoRAs, we design a novel loss to guide the model link LoRA allocations with edit knowledge. Furthermore, we propose a deferral mechanism to retain the original LLM capabilities post-edit. Extensive experiments on GPT-2 XL and LLaMA2-7B demonstrate that ELDER effectively edits models in the lifelong setting, outperforming eight baselines while exhibiting strong scalability and preserving LLMs' general abilities on downstream tasks. Our code is available at https://github.com/JiaangL/ELDER.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 7 likes.

Upgrade to Pro to view all of the tweets about this paper: