Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Adaptive Uncertainty Quantification for Generative AI (2408.08990v2)

Published 16 Aug 2024 in stat.ME, cs.AI, cs.CL, cs.LG, and stat.ML

Abstract: This work is concerned with conformal prediction in contemporary applications (including generative AI) where a black-box model has been trained on data that are not accessible to the user. Mirroring split-conformal inference, we design a wrapper around a black-box algorithm which calibrates conformity scores. This calibration is local and proceeds in two stages by first adaptively partitioning the predictor space into groups and then calibrating sectionally group by group. Adaptive partitioning (self-grouping) is achieved by fitting a robust regression tree to the conformity scores on the calibration set. This new tree variant is designed in such a way that adding a single new observation does not change the tree fit with overwhelmingly large probability. This add-one-in robustness property allows us to conclude a finite sample group-conditional coverage guarantee, a refinement of the marginal guarantee. In addition, unlike traditional split-conformal inference, adaptive splitting and within-group calibration yields adaptive bands which can stretch and shrink locally. We demonstrate benefits of local tightening on several simulated as well as real examples using non-parametric regression. Finally, we consider two contemporary classification applications for obtaining uncertainty quantification around GPT-4o predictions. We conformalize skin disease diagnoses based on self-reported symptoms as well as predicted states of U.S. legislators based on summaries of their ideology. We demonstrate substantial local tightening of the uncertainty sets while attaining similar marginal coverage.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube