Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MD-split+: Practical Local Conformal Inference in High Dimensions (2107.03280v1)

Published 7 Jul 2021 in stat.ML and cs.LG

Abstract: Quantifying uncertainty in model predictions is a common goal for practitioners seeking more than just point predictions. One tool for uncertainty quantification that requires minimal assumptions is conformal inference, which can help create probabilistically valid prediction regions for black box models. Classical conformal prediction only provides marginal validity, whereas in many situations locally valid prediction regions are desirable. Deciding how best to partition the feature space X when applying localized conformal prediction is still an open question. We present MD-split+, a practical local conformal approach that creates X partitions based on localized model performance of conditional density estimation models. Our method handles complex real-world data settings where such models may be misspecified, and scales to high-dimensional inputs. We discuss how our local partitions philosophically align with expected behavior from an unattainable conditional conformal inference approach. We also empirically compare our method against other local conformal approaches.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Benjamin LeRoy (2 papers)
  2. David Zhao (14 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.