Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 129 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

PEDAL: Enhancing Greedy Decoding with Large Language Models using Diverse Exemplars (2408.08869v2)

Published 16 Aug 2024 in cs.CL and cs.LG

Abstract: Self-ensembling techniques with diverse reasoning paths such as Self-Consistency have demonstrated remarkable performance gains in text generation with LLMs. However, such techniques depend on the availability of an accurate answer extraction process to aggregate across multiple outputs. Moreover, they acquire higher inference cost, in comparison to Greedy Decoding, due to generation of relatively higher number of output tokens. Research has shown that the free form text outputs from Self-Consistency can be aggregated reliably using LLMs to produce the final output. Additionally, recent advancements in LLM inference have demonstrated that usage of diverse exemplars in prompts have the ability to induce diversity in the LLM outputs. Such proven techniques can be easily extended to self-ensembling based approaches to achieve enhanced results in text generation. In this paper, we introduce PEDAL (Prompts based on Exemplar Diversity Aggregated using LLMs), a hybrid self-ensembling approach, that combines the strengths of diverse exemplar based prompts and LLM based aggregation to achieve improvement in overall performance. On the publicly available SVAMP and ARC datasets, our experiments reveal that PEDAL can achieve better accuracy than Greedy Decoding based strategies with lower inference cost compared to Self Consistency based approaches.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 1 like.