Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Breaking the Ceiling of the LLM Community by Treating Token Generation as a Classification for Ensembling (2406.12585v2)

Published 18 Jun 2024 in cs.CL and cs.AI

Abstract: Ensembling multiple models has always been an effective approach to push the limits of existing performance and is widely used in classification tasks by simply averaging the classification probability vectors from multiple classifiers to achieve better accuracy. However, in the thriving open-source LLM community, ensembling methods are rare and typically limited to ensembling the full-text outputs of LLMs, such as selecting the best output using a ranker, which leads to underutilization of token-level probability information. In this paper, we treat the Generation of each token by LLMs as a Classification (GaC) for ensembling. This approach fully exploits the probability information at each generation step and better prevents LLMs from producing early incorrect tokens that lead to snowballing errors. In experiments, we ensemble state-of-the-art LLMs on several benchmarks, including exams, mathematics and reasoning, and observe that our method breaks the existing community performance ceiling. Furthermore, we observed that most of the tokens in the answer are simple and do not affect the correctness of the final answer. Therefore, we also experimented with ensembling only key tokens, and the results showed better performance with lower latency across benchmarks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Yao-Ching Yu (3 papers)
  2. Chun-Chih Kuo (3 papers)
  3. Ziqi Ye (4 papers)
  4. Yu-Cheng Chang (35 papers)
  5. Yueh-Se Li (1 paper)
Citations (4)
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets