Papers
Topics
Authors
Recent
2000 character limit reached

A Novel Spatiotemporal Coupling Graph Convolutional Network

Published 9 Aug 2024 in cs.LG and cs.AI | (2408.07087v1)

Abstract: Dynamic Quality-of-Service (QoS) data capturing temporal variations in user-service interactions, are essential source for service selection and user behavior understanding. Approaches based on Latent Feature Analysis (LFA) have shown to be beneficial for discovering effective temporal patterns in QoS data. However, existing methods cannot well model the spatiality and temporality implied in dynamic interactions in a unified form, causing abundant accuracy loss for missing QoS estimation. To address the problem, this paper presents a novel Graph Convolutional Networks (GCNs)-based dynamic QoS estimator namely Spatiotemporal Coupling GCN (SCG) model with the three-fold ideas as below. First, SCG builds its dynamic graph convolution rules by incorporating generalized tensor product framework, for unified modeling of spatial and temporal patterns. Second, SCG combines the heterogeneous GCN layer with tensor factorization, for effective representation learning on bipartite user-service graphs. Third, it further simplifies the dynamic GCN structure to lower the training difficulties. Extensive experiments have been conducted on two large-scale widely-adopted QoS datasets describing throughput and response time. The results demonstrate that SCG realizes higher QoS estimation accuracy compared with the state-of-the-arts, illustrating it can learn powerful representations to users and cloud services.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.