Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatial-temporal Graph Convolutional Networks with Diversified Transformation for Dynamic Graph Representation Learning (2408.02704v1)

Published 5 Aug 2024 in cs.LG and cs.AI

Abstract: Dynamic graphs (DG) are often used to describe evolving interactions between nodes in real-world applications. Temporal patterns are a natural feature of DGs and are also key to representation learning. However, existing dynamic GCN models are mostly composed of static GCNs and sequence modules, which results in the separation of spatiotemporal information and cannot effectively capture complex temporal patterns in DGs. To address this problem, this study proposes a spatial-temporal graph convolutional networks with diversified transformation (STGCNDT), which includes three aspects: a) constructing a unified graph tensor convolutional network (GTCN) using tensor M-products without the need to represent spatiotemporal information separately; b) introducing three transformation schemes in GTCN to model complex temporal patterns to aggregate temporal information; and c) constructing an ensemble of diversified transformation schemes to obtain higher representation capabilities. Empirical studies on four DGs that appear in communication networks show that the proposed STGCNDT significantly outperforms state-of-the-art models in solving link weight estimation tasks due to the diversified transformations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ling Wang (89 papers)
  2. Yixiang Huang (4 papers)
  3. Hao Wu (623 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets