Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Graph Convolutional Network with Attention Fusion for Traffic Flow Prediction (2302.12598v2)

Published 24 Feb 2023 in cs.LG and cs.AI

Abstract: Accurate and real-time traffic state prediction is of great practical importance for urban traffic control and web mapping services. With the support of massive data, deep learning methods have shown their powerful capability in capturing the complex spatialtemporal patterns of traffic networks. However, existing approaches use pre-defined graphs and a simple set of spatial-temporal components, making it difficult to model multi-scale spatial-temporal dependencies. In this paper, we propose a novel dynamic graph convolution network with attention fusion to tackle this gap. The method first enhances the interaction of temporal feature dimensions, and then it combines a dynamic graph learner with GRU to jointly model synchronous spatial-temporal correlations. We also incorporate spatial-temporal attention modules to effectively capture longrange, multifaceted domain spatial-temporal patterns. We conduct extensive experiments in four real-world traffic datasets to demonstrate that our method surpasses state-of-the-art performance compared to 18 baseline methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Xunlian Luo (2 papers)
  2. Chunjiang Zhu (9 papers)
  3. Detian Zhang (6 papers)
  4. Qing Li (430 papers)
Citations (4)