Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Solving cluster moment relaxation with hierarchical matrix (2408.00235v1)

Published 1 Aug 2024 in math.OC, cs.NA, and math.NA

Abstract: Convex relaxation methods are powerful tools for studying the lowest energy of many-body problems. By relaxing the representability conditions for marginals to a set of local constraints, along with a global semidefinite constraint, a polynomial-time solvable semidefinite program (SDP) that provides a lower bound for the energy can be derived. In this paper, we propose accelerating the solution of such an SDP relaxation by imposing a hierarchical structure on the positive semidefinite (PSD) primal and dual variables. Furthermore, these matrices can be updated efficiently using the algebra of the compressed representations within an augmented Lagrangian method. We achieve quadratic and even near-linear time per-iteration complexity. Through experimentation on the quantum transverse field Ising model, we showcase the capability of our approach to provide a sufficiently accurate lower bound for the exact ground-state energy.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube