Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ADMM for the SDP relaxation of the QAP (1512.05448v1)

Published 17 Dec 2015 in math.OC, cs.DS, and math.CO

Abstract: The semidefinite programming (SDP) relaxation has proven to be extremely strong for many hard discrete optimization problems. This is in particular true for the quadratic assignment problem (QAP), arguably one of the hardest NP-hard discrete optimization problems. There are several difficulties that arise in efficiently solving the SDP relaxation, e.g.,~increased dimension; inefficiency of the current primal-dual interior point solvers in terms of both time and accuracy; and difficulty and high expense in adding cutting plane constraints. We propose using the alternating direction method of multipliers (ADMM) to solve the SDP relaxation. This first order approach allows for inexpensive iterations, a method of cheaply obtaining low rank solutions, as well a trivial way of adding cutting plane inequalities. When compared to current approaches and current best available bounds we obtain remarkable robustness, efficiency and improved bounds.

Citations (43)

Summary

We haven't generated a summary for this paper yet.