Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
32 tokens/sec
GPT-5 High Premium
30 tokens/sec
GPT-4o
67 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
452 tokens/sec
Kimi K2 via Groq Premium
190 tokens/sec
2000 character limit reached

Unsupervised Reservoir Computing for Multivariate Denoising of Severely Contaminated Signals (2407.18759v1)

Published 26 Jul 2024 in cs.LG and nlin.CD

Abstract: The interdependence and high dimensionality of multivariate signals present significant challenges for denoising, as conventional univariate methods often struggle to capture the complex interactions between variables. A successful approach must consider not only the multivariate dependencies of the desired signal but also the multivariate dependencies of the interfering noise. In our previous research, we introduced a method using machine learning to extract the maximum portion of ``predictable information" from univariate signal. We extend this approach to multivariate signals, with the key idea being to properly incorporate the interdependencies of the noise back into the interdependent reconstruction of the signal. The method works successfully for various multivariate signals, including chaotic signals and highly oscillating sinusoidal signals which are corrupted by spatially correlated intensive noise. It consistently outperforms other existing multivariate denoising methods across a wide range of scenarios.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com