Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
32 tokens/sec
GPT-5 High Premium
30 tokens/sec
GPT-4o
67 tokens/sec
DeepSeek R1 via Azure Premium
91 tokens/sec
GPT OSS 120B via Groq Premium
452 tokens/sec
Kimi K2 via Groq Premium
190 tokens/sec
2000 character limit reached

Signal-noise separation using unsupervised reservoir computing (2404.04870v2)

Published 7 Apr 2024 in cs.LG, eess.SP, and nlin.CD

Abstract: Removing noise from a signal without knowing the characteristics of the noise is a challenging task. This paper introduces a signal-noise separation method based on time series prediction. We use Reservoir Computing (RC) to extract the maximum portion of "predictable information" from a given signal. Reproducing the deterministic component of the signal using RC, we estimate the noise distribution from the difference between the original signal and reconstructed one. The method is based on a machine learning approach and requires no prior knowledge of either the deterministic signal or the noise distribution. It provides a way to identify additivity/multiplicativity of noise and to estimate the signal-to-noise ratio (SNR) indirectly. The method works successfully for combinations of various signal and noise, including chaotic signal and highly oscillating sinusoidal signal which are corrupted by non-Gaussian additive/ multiplicative noise. The separation performances are robust and notably outstanding for signals with strong noise, even for those with negative SNR.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube