Informed FastICA: Semi-Blind Minimum Variance Distortionless Beamformer (2407.09259v1)
Abstract: Non-Gaussianity-based Independent Vector Extraction leads to the famous one-unit FastICA/FastIVA algorithm when the likelihood function is optimized using an approximate Newton-Raphson algorithm under the orthogonality constraint. In this paper, we replace the constraint with the analytic form of the minimum variance distortionless beamformer (MVDR), by which a semi-blind variant of FastICA/FastIVA is obtained. The side information here is provided by a weighted covariance matrix replacing the noise covariance matrix, the estimation of which is a frequent goal of neural beamformers. The algorithm thus provides an intuitive connection between model-based blind extraction and learning-based extraction. The algorithm is tested in simulations and speaker ID-guided speaker extraction, showing fast convergence and promising performance.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.