Papers
Topics
Authors
Recent
2000 character limit reached

Fast Independent Vector Extraction by Iterative SINR Maximization (1910.10654v1)

Published 23 Oct 2019 in cs.SD, eess.AS, and eess.SP

Abstract: We propose fast independent vector extraction (FIVE), a new algorithm that blindly extracts a single non-Gaussian source from a Gaussian background. The algorithm iteratively computes beamforming weights maximizing the signal-to-interference-and-noise ratio for an approximate noise covariance matrix. We demonstrate that this procedure minimizes the negative log-likelihood of the input data according to a well-defined probabilistic model. The minimization is carried out via the auxiliary function technique whereas, unlike related methods, the auxiliary function is globally minimized at every iteration. Numerical experiments are carried out to assess the performance of FIVE. We find that it is vastly superior to competing methods in terms of convergence speed, and has high potential for real-time applications.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.