Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unveiling the Potential of BERTopic for Multilingual Fake News Analysis -- Use Case: Covid-19 (2407.08417v1)

Published 11 Jul 2024 in cs.LG

Abstract: Topic modeling is frequently being used for analysing large text corpora such as news articles or social media data. BERTopic, consisting of sentence embedding, dimension reduction, clustering, and topic extraction, is the newest and currently the SOTA topic modeling method. However, current topic modeling methods have room for improvement because, as unsupervised methods, they require careful tuning and selection of hyperparameters, e.g., for dimension reduction and clustering. This paper aims to analyse the technical application of BERTopic in practice. For this purpose, it compares and selects different methods and hyperparameters for each stage of BERTopic through density based clustering validation and six different topic coherence measures. Moreover, it also aims to analyse the results of topic modeling on real world data as a use case. For this purpose, the German fake news dataset (GermanFakeNCovid) on Covid-19 was created by us and in order to experiment with topic modeling in a multilingual (English and German) setting combined with the FakeCovid dataset. With the final results, we were able to determine thematic similarities between the United States and Germany. Whereas, distinguishing the topics of fake news from India proved to be more challenging.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets