Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MPTopic: Improving topic modeling via Masked Permuted pre-training (2309.01015v1)

Published 2 Sep 2023 in cs.IR and cs.LG

Abstract: Topic modeling is pivotal in discerning hidden semantic structures within texts, thereby generating meaningful descriptive keywords. While innovative techniques like BERTopic and Top2Vec have recently emerged in the forefront, they manifest certain limitations. Our analysis indicates that these methods might not prioritize the refinement of their clustering mechanism, potentially compromising the quality of derived topic clusters. To illustrate, Top2Vec designates the centroids of clustering results to represent topics, whereas BERTopic harnesses C-TF-IDF for its topic extraction.In response to these challenges, we introduce "TF-RDF" (Term Frequency - Relative Document Frequency), a distinctive approach to assess the relevance of terms within a document. Building on the strengths of TF-RDF, we present MPTopic, a clustering algorithm intrinsically driven by the insights of TF-RDF. Through comprehensive evaluation, it is evident that the topic keywords identified with the synergy of MPTopic and TF-RDF outperform those extracted by both BERTopic and Top2Vec.

Summary

We haven't generated a summary for this paper yet.