Papers
Topics
Authors
Recent
Search
2000 character limit reached

Rel-A.I.: An Interaction-Centered Approach To Measuring Human-LM Reliance

Published 10 Jul 2024 in cs.CL, cs.AI, and cs.HC | (2407.07950v2)

Abstract: The ability to communicate uncertainty, risk, and limitation is crucial for the safety of LLMs. However, current evaluations of these abilities rely on simple calibration, asking whether the language generated by the model matches appropriate probabilities. Instead, evaluation of this aspect of LLM communication should focus on the behaviors of their human interlocutors: how much do they rely on what the LLM says? Here we introduce an interaction-centered evaluation framework called Rel-A.I. (pronounced "rely"}) that measures whether humans rely on LLM generations. We use this framework to study how reliance is affected by contextual features of the interaction (e.g, the knowledge domain that is being discussed), or the use of greetings communicating warmth or competence (e.g., "I'm happy to help!"). We find that contextual characteristics significantly affect human reliance behavior. For example, people rely 10% more on LMs when responding to questions involving calculations and rely 30% more on LMs that are perceived as more competent. Our results show that calibration and language quality alone are insufficient in evaluating the risks of human-LM interactions, and illustrate the need to consider features of the interactional context.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 61 likes about this paper.