Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 35 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 30 tok/s Pro
GPT-4o 81 tok/s
GPT OSS 120B 439 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

CMTNet: Convolutional Meets Transformer Network for Hyperspectral Images Classification (2406.14080v4)

Published 20 Jun 2024 in cs.CV and cs.GR

Abstract: Hyperspectral remote sensing (HIS) enables the detailed capture of spectral information from the Earth's surface, facilitating precise classification and identification of surface crops due to its superior spectral diagnostic capabilities. However, current convolutional neural networks (CNNs) focus on local features in hyperspectral data, leading to suboptimal performance when classifying intricate crop types and addressing imbalanced sample distributions. In contrast, the Transformer framework excels at extracting global features from hyperspectral imagery. To leverage the strengths of both approaches, this research introduces the Convolutional Meet Transformer Network (CMTNet). This innovative model includes a spectral-spatial feature extraction module for shallow feature capture, a dual-branch structure combining CNN and Transformer branches for local and global feature extraction, and a multi-output constraint module that enhances classification accuracy through multi-output loss calculations and cross constraints across local, international, and joint features. Extensive experiments conducted on three datasets (WHU-Hi-LongKou, WHU-Hi-HanChuan, and WHU-Hi-HongHu) demonstrate that CTDBNet significantly outperforms other state-of-the-art networks in classification performance, validating its effectiveness in hyperspectral crop classification.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube