Cross-Scope Spatial-Spectral Information Aggregation for Hyperspectral Image Super-Resolution (2311.17340v1)
Abstract: Hyperspectral image super-resolution has attained widespread prominence to enhance the spatial resolution of hyperspectral images. However, convolution-based methods have encountered challenges in harnessing the global spatial-spectral information. The prevailing transformer-based methods have not adequately captured the long-range dependencies in both spectral and spatial dimensions. To alleviate this issue, we propose a novel cross-scope spatial-spectral Transformer (CST) to efficiently investigate long-range spatial and spectral similarities for single hyperspectral image super-resolution. Specifically, we devise cross-attention mechanisms in spatial and spectral dimensions to comprehensively model the long-range spatial-spectral characteristics. By integrating global information into the rectangle-window self-attention, we first design a cross-scope spatial self-attention to facilitate long-range spatial interactions. Then, by leveraging appropriately characteristic spatial-spectral features, we construct a cross-scope spectral self-attention to effectively capture the intrinsic correlations among global spectral bands. Finally, we elaborate a concise feed-forward neural network to enhance the feature representation capacity in the Transformer structure. Extensive experiments over three hyperspectral datasets demonstrate that the proposed CST is superior to other state-of-the-art methods both quantitatively and visually. The code is available at \url{https://github.com/Tomchenshi/CST.git}.
- R. O. Green, M. L. Eastwood, C. M. Sarture et al., “Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (aviris),” Remote sens. Environ., vol. 65, no. 3, pp. 227–248, Sep. 1998.
- L. Fang, Y. Jiang, Y. Yan, J. Yue, and Y. Deng, “Hyperspectral image instance segmentation using spectral-spatial feature pyramid network,” IEEE Trans. Geosci. Remote. Sens., vol. 61, pp. 1–13, Jan. 2023.
- Y. Xu, L. Zhang, B. Du, and L. Zhang, “Hyperspectral anomaly detection based on machine learning: An overview,” IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens., vol. 15, pp. 3351–3364, Apr. 2022.
- L. Gao, X. Sun, X. Sun, L. Zhuang, Q. Du, and B. Zhang, “Hyperspectral anomaly detection based on chessboard topology,” IEEE Trans. Geosci. Remote. Sens., vol. 61, pp. 1–16, Feb. 2023.
- Y. Tan, L. Lu, L. Bruzzone, R. Guan, Z. Chang, and C. Yang, “Hyperspectral band selection for lithologic discrimination and geological mapping,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 13, pp. 471–486, Jan. 2020.
- G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt., vol. 19, no. 1, pp. 010 901–010 901, Jan. 2014.
- Z. Wang, J. Chen, and S. C. H. Hoi, “Deep learning for image super-resolution: A survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 10, pp. 3365–3387, Oct. 2021.
- R. Dian and S. Li, “Hyperspectral image super-resolution via subspace-based low tensor multi-rank regularization,” IEEE Trans. Image Process., vol. 28, no. 10, pp. 5135–5146, May 2019.
- J. Li, D. Hong, L. Gao, J. Yao, K. Zheng, B. Zhang, and J. Chanussot, “Deep learning in multimodal remote sensing data fusion: A comprehensive review,” Int. J. Appl. Earth Obs. Geoinformation, vol. 112, p. 102926, Aug. 2022.
- W. Dong, J. Qu, S. Xiao, T. Zhang, Y. Li, and X. Jia, “Noise prior knowledge informed bayesian inference network for hyperspectral super-resolution,” IEEE Trans. Image Process., vol. 32, pp. 3121–3135, May 2023.
- S. Mei, X. Yuan, J. Ji, Y. Zhang, S. Wan, and Q. Du, “Hyperspectral image spatial super-resolution via 3d full convolutional neural network,” Remote. Sens., vol. 9, no. 11, p. 1139, Nov. 2017.
- J. Hu, Y. Liu, X. Kang, and S. Fan, “Multilevel progressive network with nonlocal channel attention for hyperspectral image super-resolution,” IEEE Trans. Geosci. Remote. Sens., vol. 60, pp. 1–14, Dec. 2022.
- K. Zheng, L. Gao, D. Hong, B. Zhang, and J. Chanussot, “Nonregsrnet: A nonrigid registration hyperspectral super-resolution network,” IEEE Trans. Geosci. Remote. Sens., vol. 60, pp. 1–16, Dec. 2022.
- J. Jiang, H. Sun, X. Liu, and J. Ma, “Learning spatial-spectral prior for super-resolution of hyperspectral imagery,” IEEE Trans. Computational Imaging, vol. 6, pp. 1082–1096, May 2020.
- K. Wang, X. Liao, J. Li, D. Meng, and Y. Wang, “Hyperspectral image super-resolution via knowledge-driven deep unrolling and transformer embedded convolutional recurrent neural network,” IEEE Trans. Image Process., vol. 32, pp. 4581–4594, Jul. 2023.
- R. Dian, L. Fang, and S. Li, “Hyperspectral image super-resolution via non-local sparse tensor factorization,” in IEEE Conf. Comput. Vis. Pattern Recognit. CVPR), Jul. 2017, pp. 3862–3871.
- L. Fang, H. Zhuo, and S. Li, “Super-resolution of hyperspectral image via superpixel-based sparse representation,” Neurocomputing, vol. 273, pp. 171–177, Aug. 2018.
- Y. Xu, Z. Wu, J. Chanussot, and Z. Wei, “Nonlocal patch tensor sparse representation for hyperspectral image super-resolution,” IEEE Trans. Image Process., vol. 28, no. 6, pp. 3034–3047, Jun. 2019.
- L. Gao, D. Hong, J. Yao, B. Zhang, P. Gamba, and J. Chanussot, “Spectral superresolution of multispectral imagery with joint sparse and low-rank learning,” IEEE Trans. Geosci. Remote. Sens., vol. 59, no. 3, pp. 2269–2280, Mar. 2021.
- B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced deep residual networks for single image super-resolution,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 1132–1140.
- Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, “Residual dense network for image super-resolution,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2018, pp. 2472–2481.
- Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, “Image super-resolution using very deep residual channel attention networks,” in Proc. Eur. Conf. Comput. Vis. (ECCV), vol. 11211, Sep. 2018, pp. 294–310.
- D. Liu, J. Li, and Q. Yuan, “A spectral grouping and attention-driven residual dense network for hyperspectral image super-resolution,” IEEE Trans. Geosci. Remote. Sens., vol. 59, no. 9, pp. 7711–7725, Sep. 2021.
- Q. Li, Q. Wang, and X. Li, “Mixed 2d/3d convolutional network for hyperspectral image super-resolution,” Remote. Sens., vol. 12, no. 10, p. 1660, May 2020.
- Q. Wang, Q. Li, and X. Li, “Hyperspectral image superresolution using spectrum and feature context,” IEEE Trans. Ind. Electron., vol. 68, no. 11, pp. 11 276–11 285, Nov. 2021.
- Y. Li, L. Zhang, C. Ding, W. Wei, and Y. Zhang, “Single hyperspectral image super-resolution with grouped deep recursive residual network,” in Proc. IEEE Int. Conf. Multimedia Big Data (BigMM), Sep. 2018, pp. 1–4.
- X. Wang, J. Ma, and J. Jiang, “Hyperspectral image super-resolution via recurrent feedback embedding and spatial-spectral consistency regularization,” IEEE Trans. Geosci. Remote. Sens., vol. 60, pp. 1–13, Mar. 2022.
- X. Wang, Q. Hu, J. Jiang, and J. Ma, “A group-based embedding learning and integration network for hyperspectral image super-resolution,” IEEE Trans. Geosci. Remote. Sens., vol. 60, pp. 1–16, Oct. 2022.
- D. Hong, Z. Han, J. Yao, L. Gao, B. Zhang, A. Plaza, and J. Chanussot, “Spectralformer: Rethinking hyperspectral image classification with transformers,” IEEE Trans. Geosci. Remote. Sens., vol. 60, pp. 1–15, Nov. 2022.
- M. Li, J. Liu, Y. Fu, Y. Zhang, and D. Dou, “Spectral enhanced rectangle transformer for hyperspectral image denoising,” in IEEE/CVF Conf. Comput. Vis. Pattern Recognit. CVPR). IEEE, Jun. 2023, pp. 5805–5814.
- J. Liang, J. Cao, G. Sun, K. Zhang, L. V. Gool, and R. Timofte, “Swinir: Image restoration using swin transformer,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. Workshops (ICCVW), Oct. 2021, pp. 1833–1844.
- S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, and M. Yang, “Restormer: Efficient transformer for high-resolution image restoration,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022, pp. 5718–5729.
- Y. Liu, J. Hu, X. Kang, J. Luo, and S. Fan, “Interactformer: Interactive transformer and CNN for hyperspectral image super-resolution,” IEEE Trans. Geosci. Remote. Sens., vol. 60, pp. 1–15, Jun. 2022.
- L. Zhang, L. Song, B. Du, and Y. Zhang, “Nonlocal low-rank tensor completion for visual data,” IEEE Trans. Cybern., vol. 51, no. 2, pp. 673–685, Feb. 2021.
- Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 9992–10 002.
- Z. Chen, Y. Zhang, J. Gu, Y. Zhang, L. Kong, and X. Yuan, “Cross aggregation transformer for image restoration,” in Advances in Neural lnf. Process. Syst. (NeurIPS), Jun. 2022.
- T. Dai, J. Cai, Y. Zhang, S. Xia, and L. Zhang, “Second-order attention network for single image super-resolution,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 11 065–11 074.
- Y. Yuan, X. Zheng, and X. Lu, “Hyperspectral image superresolution by transfer learning,” IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens., vol. 10, no. 5, pp. 1963–1974, May 2017.
- J. Li, R. Cui, B. Li, R. Song, Y. Li, and Q. Du, “Hyperspectral image super-resolution with 1d-2d attentional convolutional neural network,” Remote. Sens., vol. 11, no. 23, p. 2859, Dec. 2019.
- Q. Li, Q. Wang, and X. Li, “Exploring the relationship between 2d/3d convolution for hyperspectral image super-resolution,” IEEE Trans. Geosci. Remote. Sens., vol. 59, no. 10, pp. 8693–8703, Jan. 2021.
- Q. Li, Y. Yuan, X. Jia, and Q. Wang, “Dual-stage approach toward hyperspectral image super-resolution,” IEEE Trans. Image Process., vol. 31, pp. 7252–7263, Nov. 2022.
- Y. Mei, Y. Fan, Y. Zhou, L. Huang, T. S. Huang, and H. Shi, “Image super-resolution with cross-scale non-local attention and exhaustive self-exemplars mining,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 5689–5698.
- H. Chen, Y. Wang, T. Guo, C. Xu, Y. Deng, Z. Liu, S. Ma, C. Xu, C. Xu, and W. Gao, “Pre-trained image processing transformer,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 12 299–12 310.
- Y. Wu, R. Cao, Y. Hu, J. Wang, and K. Li, “Combining global receptive field and spatial spectral information for single-image hyperspectral super-resolution,” Neurocomputing, vol. 542, p. 126277, Apr. 2023.
- N. Yokoya and A. Iwasaki, “Airborne hyperspectral data over chikusei,” Space Appl. Lab., Univ. Tokyo, Tokyo, Japan, Tech. Rep. SAL-2016-05-27, May 2016.
- X. Huang and L. Zhang, “A comparative study of spatial approaches for urban mapping using hyperspectral rosis images over pavia city, northern italy,” Int. J. Remote Sens., vol. 30, no. 12, pp. 3205–3221, Mar. 2009.
- W. Shi, J. Caballero, F. Huszar, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z. Wang, “Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 1874–1883.