Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accelerating Graph-based Vector Search via Delayed-Synchronization Traversal (2406.12385v1)

Published 18 Jun 2024 in cs.AR

Abstract: Vector search systems are indispensable in LLM serving, search engines, and recommender systems, where minimizing online search latency is essential. Among various algorithms, graph-based vector search (GVS) is particularly popular due to its high search performance and quality. To efficiently serve low-latency GVS, we propose a hardware-algorithm co-design solution including Falcon, a GVS accelerator, and Delayed-Synchronization Traversal (DST), an accelerator-optimized graph traversal algorithm. Falcon implements high-performance GVS operators and reduces memory accesses with an on-chip Bloom filter to track search states. DST improves search performance and quality by relaxing the graph traversal order to maximize accelerator utilization. Evaluation across various graphs and datasets shows that our Falcon prototype on FPGAs, coupled with DST, achieves up to 4.3$\times$ and 19.5$\times$ speedups in latency and up to 8.0$\times$ and 26.9$\times$ improvements in energy efficiency over CPU and GPU-based GVS systems. The remarkable efficiency of Falcon and DST demonstrates their potential to become the standard solutions for future GVS acceleration.

Summary

We haven't generated a summary for this paper yet.