Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Proxima: Near-storage Acceleration for Graph-based Approximate Nearest Neighbor Search in 3D NAND (2312.04257v1)

Published 7 Dec 2023 in cs.AR

Abstract: Approximate nearest neighbor search (ANNS) plays an indispensable role in a wide variety of applications, including recommendation systems, information retrieval, and semantic search. Among the cutting-edge ANNS algorithms, graph-based approaches provide superior accuracy and scalability on massive datasets. However, the best-performing graph-based ANN search solutions incur tens of hundreds of memory footprints as well as costly distance computation, thus hindering their efficient deployment at scale. The 3D NAND flash is emerging as a promising device for data-intensive applications due to its high density and nonvolatility. In this work, we present the near-storage processing (NSP)-based ANNS solution Proxima, to accelerate graph-based ANNS with algorithm-hardware co-design in 3D NAND flash. Proxima significantly reduces the complexity of graph search by leveraging the distance approximation and early termination. On top of the algorithmic enhancement, we implement Proxima search algorithm in 3D NAND flash using the heterogeneous integration technique. To maximize 3D NAND's bandwidth utilization, we present customized dataflow and optimized data allocation scheme. Our evaluation results show that: compared to graph ANNS on CPU and GPU, Proxima achieves a magnitude improvement in throughput or energy efficiency. Proxima yields 7x to 13x speedup over existing ASIC designs. Furthermore, Proxima achieves a good balance between accuracy, efficiency and storage density compared to previous NSP-based accelerators.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.