Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Systematic Analysis of Large Language Models as Soft Reasoners: The Case of Syllogistic Inferences (2406.11341v3)

Published 17 Jun 2024 in cs.CL

Abstract: The reasoning abilities of LLMs are becoming a central focus of study in NLP. In this paper, we consider the case of syllogistic reasoning, an area of deductive reasoning studied extensively in logic and cognitive psychology. Previous research has shown that pre-trained LLMs exhibit reasoning biases, such as $\textit{content effects}$, avoid answering that $\textit{no conclusion follows}$, display human-like difficulties, and struggle with multi-step reasoning. We contribute to this research line by systematically investigating the effects of chain-of-thought reasoning, in-context learning (ICL), and supervised fine-tuning (SFT) on syllogistic reasoning, considering syllogisms with conclusions that support or violate world knowledge, as well as ones with multiple premises. Crucially, we go beyond the standard focus on accuracy, with an in-depth analysis of the conclusions generated by the models. Our results suggest that the behavior of pre-trained LLMs can be explained by heuristics studied in cognitive science and that both ICL and SFT improve model performance on valid inferences, although only the latter mitigates most reasoning biases without harming model consistency.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Leonardo Bertolazzi (4 papers)
  2. Albert Gatt (47 papers)
  3. Raffaella Bernardi (24 papers)
Citations (1)
X Twitter Logo Streamline Icon: https://streamlinehq.com