Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Unified View of Group Fairness Tradeoffs Using Partial Information Decomposition (2406.04562v2)

Published 7 Jun 2024 in cs.IT, cs.CY, cs.LG, math.IT, and stat.ML

Abstract: This paper introduces a novel information-theoretic perspective on the relationship between prominent group fairness notions in machine learning, namely statistical parity, equalized odds, and predictive parity. It is well known that simultaneous satisfiability of these three fairness notions is usually impossible, motivating practitioners to resort to approximate fairness solutions rather than stringent satisfiability of these definitions. However, a comprehensive analysis of their interrelations, particularly when they are not exactly satisfied, remains largely unexplored. Our main contribution lies in elucidating an exact relationship between these three measures of (un)fairness by leveraging a body of work in information theory called partial information decomposition (PID). In this work, we leverage PID to identify the granular regions where these three measures of (un)fairness overlap and where they disagree with each other leading to potential tradeoffs. We also include numerical simulations to complement our results.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Faisal Hamman (9 papers)
  2. Sanghamitra Dutta (34 papers)
Citations (2)