Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fairness Through Counterfactual Utilities (2108.05315v2)

Published 11 Aug 2021 in cs.LG and cs.CY

Abstract: Group fairness definitions such as Demographic Parity and Equal Opportunity make assumptions about the underlying decision-problem that restrict them to classification problems. Prior work has translated these definitions to other machine learning environments, such as unsupervised learning and reinforcement learning, by implementing their closest mathematical equivalent. As a result, there are numerous bespoke interpretations of these definitions. Instead, we provide a generalized set of group fairness definitions that unambiguously extend to all machine learning environments while still retaining their original fairness notions. We derive two fairness principles that enable such a generalized framework. First, our framework measures outcomes in terms of utilities, rather than predictions, and does so for both the decision-algorithm and the individual. Second, our framework considers counterfactual outcomes, rather than just observed outcomes, thus preventing loopholes where fairness criteria are satisfied through self-fulfilling prophecies. We provide concrete examples of how our counterfactual utility fairness framework resolves known fairness issues in classification, clustering, and reinforcement learning problems. We also show that many of the bespoke interpretations of Demographic Parity and Equal Opportunity fit nicely as special cases of our framework.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Jack Blandin (1 paper)
  2. Ian Kash (8 papers)
Citations (1)