Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Magnetic field effect on hadron yield ratios and fluctuations in a hadron resonance gas (2405.16306v3)

Published 25 May 2024 in hep-ph and nucl-th

Abstract: This work studies the influence of an external magnetic field on hadron yields and fluctuations in a hadron resonance gas by performing calculations within an updated version of the open-source Thermal-FIST package. The presence of the magnetic field has a sizable influence on certain hadron yield ratios. Most notably, it leads to enhanced $p/\pi$ and suppressed $n/p$ ratios, which may serve as a magnetometer in heavy-ion collisions. By attributing the centrality dependence of the $p/\pi$ ratio in Pb-Pb collisions at 5.02~TeV measured by the ALICE Collaboration entirely to the magnetic field, its maximal strength at freeze-out is estimated to be $eB \simeq 0.12$~GeV$2 \simeq 6.3 m_\pi2$ in peripheral collisions. The magnetic field also enhances various conserved charge susceptibilities, which is qualitatively consistent with recent lattice QCD data and is driven in the HRG model by the increase of hadron densities. However, the variances of hadrons do not show any enhancement when normalized by the means, therefore, measurements of second-order fluctuations in heavy-ion collisions appear to offer limited additional information about the magnetic field relative to mean multiplicities.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. V. A. Miransky and I. A. Shovkovy, Phys. Rept. 576, 1 (2015), arXiv:1503.00732 [hep-ph] .
  2. N. Mueller and J. M. Pawlowski, Phys. Rev. D 91, 116010 (2015), arXiv:1502.08011 [hep-ph] .
  3. T. Vachaspati, Phys. Lett. B 265, 258 (1991).
  4. A. K. Harding and D. Lai, Rept. Prog. Phys. 69, 2631 (2006), arXiv:astro-ph/0606674 .
  5. X.-G. Huang, Rept. Prog. Phys. 79, 076302 (2016), arXiv:1509.04073 [nucl-th] .
  6. G. Endrodi, JHEP 07, 173 (2015), arXiv:1504.08280 [hep-lat] .
  7. R. Hagedorn, Nuovo Cim. Suppl. 3, 147 (1965).
  8. J. Cleymans and H. Satz, Z. Phys. C 57, 135 (1993), arXiv:hep-ph/9207204 .
  9. G. Endrödi, JHEP 04, 023 (2013), arXiv:1301.1307 [hep-ph] .
  10. K. Fukushima and Y. Hidaka, Phys. Rev. Lett. 117, 102301 (2016), arXiv:1605.01912 [hep-ph] .
  11. V. Vovchenko and H. Stoecker, Comput. Phys. Commun. 244, 295 (2019), arXiv:1901.05249 [nucl-th] .
  12. Version 1.5 is currently available as a pre-release at https://github.com/vlvovch/Thermal-FIST/tree/devel.
  13. B. Abelev et al. (ALICE), Phys. Rev. C 88, 044910 (2013), arXiv:1303.0737 [hep-ex] .
  14. S. Acharya et al. (ALICE), Phys. Rev. C 101, 044907 (2020a), arXiv:1910.07678 [nucl-ex] .
  15. V. Vovchenko and V. Koch, Phys. Lett. B 835, 137577 (2022), arXiv:2210.15641 [nucl-th] .
  16. A. Bzdak and V. Skokov, Phys. Lett. B 710, 171 (2012), arXiv:1111.1949 [hep-ph] .
  17. W.-T. Deng and X.-G. Huang, Phys. Rev. C 85, 044907 (2012), arXiv:1201.5108 [nucl-th] .
  18. K. Tuchin, Adv. High Energy Phys. 2013, 490495 (2013), arXiv:1301.0099 [hep-ph] .
  19. S. Acharya et al. (ALICE), Phys. Rev. C 101, 044611 (2020b), [Erratum: Phys.Rev.C 105, 029902 (2022)], arXiv:1909.01281 [nucl-ex] .
  20.   (2022), arXiv:2211.04384 [nucl-ex] .
  21. S. Acharya et al. (ALICE), Phys. Rev. C 107, 064904 (2023a), arXiv:2211.14015 [nucl-ex] .
  22. P. Braun-Munzinger and B. Dönigus, Nucl. Phys. A 987, 144 (2019), arXiv:1809.04681 [nucl-ex] .
  23. D. Oliinychenko and C. Shen,   (2021), arXiv:2105.07539 [hep-ph] .
  24. P. Alba et al., Phys. Rev. D 96, 034517 (2017), arXiv:1702.01113 [hep-lat] .
  25. M. Kitazawa and M. Asakawa, Phys. Rev. C 86, 024904 (2012), [Erratum: Phys.Rev.C 86, 069902 (2012)], arXiv:1205.3292 [nucl-th] .
  26. S. Acharya et al. (ALICE), Phys. Lett. B 807, 135564 (2020c), arXiv:1910.14396 [nucl-ex] .
  27. S. Acharya et al. (ALICE), Phys. Lett. B 844, 137545 (2023b), arXiv:2206.03343 [nucl-ex] .
  28. C. A. Pruneau, Phys. Rev. C 100, 034905 (2019), arXiv:1903.04591 [nucl-th] .
  29. V. Vovchenko and V. Koch, Phys. Rev. C 103, 044903 (2021), arXiv:2012.09954 [hep-ph] .
  30. S. Acharya et al. (ALICE), Phys. Lett. B 832, 137242 (2022), arXiv:2112.09482 [nucl-ex] .

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.