Magnetic effects in the Hadron Resonance Gas (2405.15745v2)
Abstract: We discuss the modeling of the hadronic phase of QCD at finite magnetic field in the framework of hadron resonance gas (HRG). We focus on the statistical description of particle yields that include contribution from resonance decays. We demonstrate that the swift increase in the number of protons with magnetic field predicted in the HRG is due to the ill-defined description of higher-spin states. We discuss fluctuations of conserved charges and show that at present the qualitative comparison of the model predictions with the Lattice QCD data should be treated with care. We also discuss the principle of detailed balance which allows to study the magnetic field dependence of neutral resonances.
- D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, The Effects of topological charge change in heavy ion collisions: ’Event by event P and CP violation’, Nucl. Phys. A 803, 227 (2008), arXiv:0711.0950 [hep-ph] .
- V. Skokov, A. Y. Illarionov, and V. Toneev, Estimate of the magnetic field strength in heavy-ion collisions, Int. J. Mod. Phys. A 24, 5925 (2009), arXiv:0907.1396 [nucl-th] .
- A. Bzdak and V. Skokov, Event-by-event fluctuations of magnetic and electric fields in heavy ion collisions, Phys. Lett. B 710, 171 (2012), arXiv:1111.1949 [hep-ph] .
- R. C. Duncan and C. Thompson, Formation of very strongly magnetized neutron stars - implications for gamma-ray bursts, Astrophys. J. Lett. 392, L9 (1992).
- T. Vachaspati, Magnetic fields from cosmological phase transitions, Phys. Lett. B 265, 258 (1991).
- K. Fukushima, D. E. Kharzeev, and H. J. Warringa, The Chiral Magnetic Effect, Phys. Rev. D 78, 074033 (2008), arXiv:0808.3382 [hep-ph] .
- K. Landsteiner, E. Megias, and F. Pena-Benitez, Anomalous Transport from Kubo Formulae, Lect. Notes Phys. 871, 433 (2013), arXiv:1207.5808 [hep-th] .
- M. N. Chernodub, Superconductivity of QCD vacuum in strong magnetic field, Phys. Rev. D 82, 085011 (2010), arXiv:1008.1055 [hep-ph] .
- N. Sadooghi and F. Taghinavaz, Dilepton production rate in a hot and magnetized quark-gluon plasma, Annals Phys. 376, 218 (2017), arXiv:1601.04887 [hep-ph] .
- A. Das, A. Bandyopadhyay, and C. A. Islam, Lepton pair production from a hot and dense QCD medium in the presence of an arbitrary magnetic field, Phys. Rev. D 106, 056021 (2022), arXiv:2109.00019 [hep-ph] .
- M. D’Elia and F. Negro, Chiral Properties of Strong Interactions in a Magnetic Background, Phys. Rev. D 83, 114028 (2011), arXiv:1103.2080 [hep-lat] .
- F. Bruckmann, G. Endrodi, and T. G. Kovacs, Inverse magnetic catalysis and the Polyakov loop, JHEP 04, 112, arXiv:1303.3972 [hep-lat] .
- R. Gatto and M. Ruggieri, Quark Matter in a Strong Magnetic Background, Lect. Notes Phys. 871, 87 (2013), arXiv:1207.3190 [hep-ph] .
- O. Bergman, J. Erdmenger, and G. Lifschytz, A Review of Magnetic Phenomena in Probe-Brane Holographic Matter, Lect. Notes Phys. 871, 591 (2013), arXiv:1207.5953 [hep-th] .
- J. O. Andersen, W. R. Naylor, and A. Tranberg, Phase diagram of QCD in a magnetic field: A review, Rev. Mod. Phys. 88, 025001 (2016), arXiv:1411.7176 [hep-ph] .
- G. Endrodi, Critical point in the QCD phase diagram for extremely strong background magnetic fields, JHEP 07, 173, arXiv:1504.08280 [hep-lat] .
- V. A. Miransky and I. A. Shovkovy, Quantum field theory in a magnetic field: From quantum chromodynamics to graphene and Dirac semimetals, Phys. Rept. 576, 1 (2015), arXiv:1503.00732 [hep-ph] .
- K. Fukushima, Extreme matter in electromagnetic fields and rotation, Prog. Part. Nucl. Phys. 107, 167 (2019), arXiv:1812.08886 [hep-ph] .
- K. Hattori, K. Itakura, and S. Ozaki, Strong-field physics in QED and QCD: From fundamentals to applications, Prog. Part. Nucl. Phys. 133, 104068 (2023), arXiv:2305.03865 [hep-ph] .
- A. Bazavov et al. (HotQCD), Equation of state in ( 2+1 )-flavor QCD, Phys. Rev. D 90, 094503 (2014), arXiv:1407.6387 [hep-lat] .
- G. Endrödi, QCD equation of state at nonzero magnetic fields in the Hadron Resonance Gas model, JHEP 04, 023, arXiv:1301.1307 [hep-ph] .
- R. K. Mohapatra, Effect of inverse magnetic catalysis on conserved-charge fluctuations in a hadron resonance gas model, Phys. Rev. C 99, 024902 (2019), arXiv:1711.06913 [hep-ph] .
- A. Das, H. Mishra, and R. K. Mohapatra, Transport coefficients of hot and dense hadron gas in a magnetic field: a relaxation time approach, Phys. Rev. D 100, 114004 (2019), arXiv:1909.06202 [hep-ph] .
- L. Landau and E. Lifshits, Quantum mechanics: non-relativistic theory, Course of theoretical physics volume 3 (Pergamon Press, 1977).
- P. Braun-Munzinger, K. Redlich, and J. Stachel, Particle production in heavy ion collisions (2003), arXiv:nucl-th/0304013 .
- R. L. Workman et al. (Particle Data Group), Review of Particle Physics, PTEP 2022, 083C01 (2022).
- G. Velo and D. Zwanziger, Propagation and quantization of Rarita-Schwinger waves in an external electromagnetic potential, Phys. Rev. 186, 1337 (1969).
- K. Johnson and E. C. G. Sudarshan, Inconsistency of the local field theory of charged spin 3/2 particles, Annals Phys. 13, 126 (1961).
- S. Ferrara, M. Porrati, and V. L. Telegdi, g=2𝑔2g=2italic_g = 2 as the natural value of the tree-level gyromagnetic ratio of elementary particles, Phys. Rev. D 46, 3529 (1992).
- M. Porrati and R. Rahman, Causal Propagation of a Charged Spin 3/2 Field in an External Electromagnetic Background, Phys. Rev. D 80, 025009 (2009), arXiv:0906.1432 [hep-th] .
- A. Bandyopadhyay and S. Mallik, Rho meson decay in the presence of a magnetic field, Eur. Phys. J. C 77, 771 (2017), arXiv:1610.07887 [hep-ph] .
- S. Chakrabarty, Quark matter in strong magnetic field, Phys. Rev. D 54, 1306 (1996), arXiv:hep-ph/9603406 .
- E. S. Fraga and A. J. Mizher, Chiral transition in a strong magnetic background, Phys. Rev. D 78, 025016 (2008), arXiv:0804.1452 [hep-ph] .
- A. Andronic, P. Braun-Munzinger, and J. Stachel, Hadron production in central nucleus-nucleus collisions at chemical freeze-out, Nucl. Phys. A 772, 167 (2006), arXiv:nucl-th/0511071 .
- S. Ejiri, F. Karsch, and K. Redlich, Hadronic fluctuations at the QCD phase transition, Phys. Lett. B 633, 275 (2006b), arXiv:hep-ph/0509051 .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.