Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On cyclotomic matrices involving Gauss sums over finite fields (2404.15063v5)

Published 23 Apr 2024 in math.NT

Abstract: Inspired by the works of L. Carlitz and Z.-W. Sun on cyclotomic matrices, in this paper, we investigate certain cyclotomic matrices involving Gauss sums over finite fields, which can be viewed as finite field analogues of certain matrices related to the Gamma function. For example, let $q=pn$ be an odd prime power with $p$ prime and $n\in\mathbb{Z}+$. Let $\zeta_p=e{2\pi{\bf i}/p}$ and let $\chi$ be a generator of the group of all mutiplicative characters of the finite field $\mathbb{F}q$. For the Gauss sum $$G_q(\chi{r})=\sum{x\in\mathbb{F}q}\chi{r}(x)\zeta_p{{\rm Tr}{\mathbb{F}q/\mathbb{F}_p}(x)},$$ we prove that $$\det \left[G_q(\chi{2i+2j})\right]{0\le i,j\le (q-3)/2}=(-1){\alpha_p}\left(\frac{q-1}{2}\right){\frac{q-1}{2}}2{\frac{p{n-1}-1}{2}},$$ where $$\alpha_p= \begin{cases} 1 & \mbox{if}\ n\equiv 1\pmod 2, (p2+7)/8 & \mbox{if}\ n\equiv 0\pmod 2. \end{cases}$$

Citations (1)

Summary

We haven't generated a summary for this paper yet.