Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On finite field analogues of determinants involving the Beta function (2307.12261v7)

Published 23 Jul 2023 in math.NT

Abstract: Motivated by the works of L. Carlitz, R. Chapman and Z.-W. Sun on cyclotomic matrices, in this paper, we investigate certain cyclotomic matrices concerning the Jacobi sums over finite fields, which can be viewed as finite field analogues of certain matrices involving the Beta function. For example, let $q>1$ be a prime power and let $\chi$ be a generator of the group of all multiplicative characters of $\mathbb{F}q$. Then we prove that $$\det\left[J_q(\chii,\chij)\right]{1\le i,j\le q-2}=(q-1){q-3},$$ where $J_q(\chii,\chij)$ is the Jacobi sum over $\mathbb{F}q$. This is a finite analogue of $$\det [B(i,j)]{1\le i,j\le n}=(-1){\frac{n(n-1)}{2}}\prod_{r=0}{n-1}\frac{(r!)3}{(n+r)!},$$ where $B$ is the Beta function. Also, if $q=p\ge5$ is an odd prime, then we show that $$\det \left[J_p(\chi{2i},\chi{2j})\right]_{1\le i,j\le (p-3)/2}=\frac{1+(-1){\frac{p+1}{2}}p}{4}\left(\frac{p-1}{2}\right){\frac{p-5}{2}}.$$

Citations (1)

Summary

We haven't generated a summary for this paper yet.