Papers
Topics
Authors
Recent
2000 character limit reached

Non-Hermitian butterfly spectra in a family of quasiperiodic lattices (2404.11020v1)

Published 17 Apr 2024 in cond-mat.dis-nn

Abstract: We propose a family of exactly solvable quasiperiodic lattice models with analytical complex mobility edges, which can incorporate mosaic modulations as a straightforward generalization. By sweeping a potential tuning parameter $\delta$, we demonstrate a kind of interesting butterfly-like spectra in complex energy plane, which depicts energy-dependent extended-localized transitions sharing a common exact non-Hermitian mobility edge. Applying Avila's global theory, we are able to analytically calculate the Lyapunov exponents and determine the mobility edges exactly. For the minimal model without mosaic modulation, a compactly analytic formula for the complex mobility edges is obtained, which, together with analytical estimation of the range of complex energy spectrum, gives the true mobility edge. The non-Hermitian mobility edge in complex energy plane is further verified by numerical calculations of fractal dimension and spatial distribution of wave functions. Tuning parameters of non-Hermitian potentials, we also investigate the variations of the non-Hermitian mobility edges and the corresponding butterfly spectra, which exhibit richness of spectrum structures.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.