Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Engineering mobility in quasiperiodic lattices with exact mobility edges (2307.11415v1)

Published 21 Jul 2023 in cond-mat.dis-nn

Abstract: We investigate the effect of an additional modulation parameter $\delta$ on the mobility properties of quasiperiodic lattices described by a generalized Ganeshan-Pixley-Das Sarma model with two on site modulation parameters. For the case with bounded quasiperiodic potential, we unveil the existence of self-duality relation, independent of $\delta$. By applying Avila's global theory, we analytically derive Lyapunov exponents in the whole parameter space, which enables us to determine mobility edges or anomalous mobility edges exactly. Our analytical results indicate that the mobility edge equation is described by two curves and their intersection with the spectrum gives the true mobility edge. Tuning the strength parameter $\delta$ can change the spectrum of the quasiperiodic lattice, and thus engineers the mobility of quasi-periodic systems, giving rise to completely extended, partially localized, and completely localized regions. For the case with unbounded quasiperiodic potential, we also obtain the analytical expression of the anomalous mobility edge, which separates localized states from critical states. By increasing the strength parameter $\delta$, we find that the critical states can be destroyed gradually and finally vanishes.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.