Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Exact anomalous mobility edges in one-dimensional non-Hermitian quasicrystals (2409.03591v1)

Published 5 Sep 2024 in cond-mat.dis-nn

Abstract: Recent research has made significant progress in understanding localization transitions and mobility edges (MEs) that separate extended and localized states in non-Hermitian (NH) quasicrystals. Here we focus on studying critical states and anomalous MEs, which identify the boundaries between critical and localized states within two distinct NH quasiperiodic models. Specifically, the first model is a quasiperiodic mosaic lattice with both nonreciprocal hopping term and on-site potential. In contrast, the second model features an unbounded quasiperiodic on-site potential and nonreciprocal hopping. Using Avila's global theory, we analytically derive the Lyapunov exponent and exact anomalous MEs. To confirm the emergence of the robust critical states in both models, we conduct a numerical multifractal analysis of the wave functions and spectrum analysis of level spacing. Furthermore, we investigate the transition between real and complex spectra and the topological origins of the anomalous MEs. Our results may shed light on exploring the critical states and anomalous MEs in NH quasiperiodic systems.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.