Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Quantum-inspired activation functions and quantum Chebyshev-polynomial network (2404.05901v3)

Published 8 Apr 2024 in quant-ph, math-ph, math.MP, and physics.comp-ph

Abstract: Driven by the significant advantages offered by quantum computing, research in quantum machine learning has increased in recent years. While quantum speed-up has been demonstrated in some applications of quantum machine learning, a comprehensive understanding of its underlying mechanisms for improved performance remains elusive. Our study address this problem by investigating the functional expressibility of quantum circuits integrated within a convolutional neural network (CNN). Through numerical experiments on the MNIST, Fashion MNIST, and Letter datasets, our hybrid quantum-classical CNN model demonstrates superior feature selection capabilities and substantially reduces the required training steps compared to classical CNNs. Notably, we observe similar performance improvements when incorporating three other quantum-inspired activation functions in classical neural networks, indicating the benefits of adopting quantum-inspired activation functions. Additionally, we developed a hybrid quantum Chebyshev-polynomial network (QCPN) based on the properties of quantum activation functions. We demonstrate that a three-layer QCPN can approximate any continuous function, a feat not achievable by a standard three-layer classical neural network. Our findings suggest that quantum-inspired activation functions can reduce model depth while maintaining high learning capability, making them a promising approach for optimizing large-scale machine-learning models. We also outline future research directions for leveraging quantum advantages in machine learning, aiming to unlock further potential in this rapidly evolving field.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (74)
  1. Ladd, T. D. et al. Quantum computers. \JournalTitleNature 464, 45–53, DOI: 10.1038/nature08812 (201).
  2. Cao, Y. et al. Quantum Chemistry in the Age of Quantum Computing. \JournalTitleChemical Reviews 119, 10856–10915, DOI: 10.1021/acs.chemrev.8b00803 (2019).
  3. A rigorous and robust quantum speed-up in supervised machine learning. \JournalTitleNature Physics 17, 1013–1017, DOI: 10.1038/s41567-021-01287-z (2021).
  4. Complexity-Theoretic foundations of quantum supremacy experiments. \JournalTitlearXiv: 1612.05903 DOI: https://arxiv.org/abs/1612.05903 (2016).
  5. Minimally entangled state preparation of localized wave functions on quantum computers. \JournalTitlePhys. Rev. A 102, 012612, DOI: 10.1103/PhysRevA.102.012612 (2020).
  6. Niu, M. Y. et al. Entangling quantum generative adversarial networks. \JournalTitlePhys. Rev. Lett. 128, 220505, DOI: 10.1103/PhysRevLett.128.220505 (2022).
  7. O’Brien, J. L. Optical quantum computing. \JournalTitleScience 218, 1567–1570, DOI: 10.1126/science.1142892 (2007).
  8. Jerbi, S. et al. Quantum machine learning beyond kernel methods. \JournalTitleNature Communications 14, 517, DOI: 10.1038/s41467-023-36159-y (2023).
  9. Sood, S. K. & Pooja. Quantum computing review: a decade of research. \JournalTitleIEEE Transactions on Engineering Management 1–15, DOI: 10.1109/TEM.2023.3284689 (2023).
  10. Quantum kernel methods for solving regression problems and differential equations. \JournalTitlePhys. Rev. A 107, 032428, DOI: 10.1103/PhysRevA.107.032428 (2023).
  11. Kok, P. et al. Linear optical quantum computing with photonic qubits. \JournalTitleRev. Mod. Phys. 79, 135–174, DOI: 10.1103/RevModPhys.79.135 (2007).
  12. Barends, R. et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. \JournalTitleNature 508, 500–503, DOI: 10.1038/nature13171 (2014).
  13. High-Fidelity quantum logic gates using trapped-ion hyperfine qubits. \JournalTitlePhys. Rev. Lett. 117, 060504, DOI: 10.1103/PhysRevLett.117.060504 (2016).
  14. Georgescu, I. Trapped ion quantum computing turns 25, DOI: 10.1038/s42254-020-0189-1 (2020).
  15. Evered, S. J. et al. High-fidelity parallel entangling gates on a neutral-atom quantum computer. \JournalTitleNature 268–272, DOI: 10.1038/s41586-023-06481-y (2023).
  16. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. \JournalTitleNature 574, 505–510, DOI: 10.1038/s41586-019-1666-5 (2019).
  17. Zhong, H.-S. et al. Quantum computational advantage using photons. \JournalTitleScience 370, 1460–1463, DOI: 10.1126/science.abe8770 (2020).
  18. Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. \JournalTitleNature Communications 5, 4213, DOI: 10.1038/ncomms5213 (2014).
  19. O’Malley, P. J. J. et al. Scalable quantum simulation of molecular energies. \JournalTitlePhys. Rev. X 6, 031007, DOI: 10.1103/PhysRevX.6.031007 (2016).
  20. Kivlichan, I. D. et al. Quantum simulation of electronic structure with linear depth and connectivity. \JournalTitlePhys. Rev. Lett. 120, 110501, DOI: 10.1103/PhysRevLett.120.110501 (2018).
  21. Tubman, N. M. et al. Postponing the orthogonality catastrophe: efficient state preparation for electronic structure simulations on quantum devices, DOI: https://arxiv.org/abs/1809.05523 (2018).
  22. Ground-State preparation and energy estimation on early fault-tolerant quantum computers via quantum eigenvalue transformation of unitary matrices. \JournalTitlePRX Quantum 3, 040305, DOI: 10.1103/PRXQuantum.3.040305 (2022).
  23. Use VQE to calculate the ground energy of hydrogen molecules on IBM Quantum. \JournalTitlearXiv: 2305.06538 DOI: https://arxiv.org/abs/2305.06538 (2023).
  24. Faster variational quantum algorithms with quantum kernel-based surrogate models. \JournalTitleQuantum Science and Technology 8, 045016, DOI: 10.1088/2058-9565/aceb87 (2023).
  25. Hybrid quantum-classical approach to correlated materials. \JournalTitlePhys. Rev. X 6, 031045, DOI: 10.1103/PhysRevX.6.031045 (2016).
  26. Baker, T. E. Lanczos recursion on a quantum computer for the Green’s function and ground state. \JournalTitlePhys. Rev. A 103, 032404, DOI: 10.1103/PhysRevA.103.032404 (2021).
  27. Rizzo, J. et al. One-particle Green’s functions from the quantum equation of motion algorithm. \JournalTitlePhys. Rev. Res. 4, 043011, DOI: 10.1103/PhysRevResearch.4.043011 (2022).
  28. Detecting confined and deconfined spinons in dynamical quantum simulations. \JournalTitlePhys. Rev. Res. 4, 013193, DOI: 10.1103/PhysRevResearch.4.013193 (2022).
  29. Highly resolved spectral functions of two-dimensional systems with neural quantum states. \JournalTitlePhys. Rev. Lett. 131, 046501, DOI: 10.1103/PhysRevLett.131.046501 (2023).
  30. Farhi, E. et al. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. \JournalTitleScience 292, 472–475, DOI: 10.1126/science.1057726 (2001).
  31. Automatically Solving NP-Complete Problems on a Quantum Computer. In Proceedings of the 40th International Conference on Software Engineering: Companion Proceeedings, ICSE ’18, 258–259, DOI: 10.1145/3183440.3194959 (Association for Computing Machinery, 2018).
  32. Quantum superiority for verifying NP-complete problems with linear optics . \JournalTitlenpj Quantum Information 4, 56, DOI: 10.1038/s41534-018-0103-1 (2018).
  33. Experimental demonstration of quantum advantage for NP verification with limited information. \JournalTitleNature Communications 12, 850, DOI: 10.1038/s41467-021-21119-1 (2021).
  34. Zhang, A. et al. Quantum verification of NP problems with single photons and linear optics. \JournalTitleLight: Science & Applications 10, 169, DOI: 10.1038/s41377-021-00608-4 (2021).
  35. Biamonte, J. et al. Quantum machine learning. \JournalTitleNature 549, 195–202, DOI: 10.1038/nature23474 (2017).
  36. Ciliberto, C. et al. Quantum machine learning: a classical perspective. \JournalTitleProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474, 20170551, DOI: 10.1098/rspa.2017.0551 (2018).
  37. Schuld, M. Supervised quantum machine learning models are kernel methods. \JournalTitlearXiv: 2101.11020 DOI: https://arxiv.org/abs/2101.11020 (2021).
  38. Quantum classifier with tailored quantum kernel. \JournalTitlenpj Quantum Information 6, 41, DOI: 10.1038/s41534-020-0272-6 (2020).
  39. Quantum generative adversarial networks for learning and loading random distributions. \JournalTitlenpj Quantum Information 5, 103, DOI: https://www.nature.com/articles/s41534-019-0223-2 (2019).
  40. Huang, K. et al. Quantum generative adversarial networks with multiple superconducting qubits. \JournalTitlenpj Quantum Information 7, 165, DOI: 10.1038/s41534-021-00503-1 (2021).
  41. Kernel-based quantum regressor models learning non-Markovianity. \JournalTitlePhys. Rev. A 107, 022402, DOI: 10.1103/PhysRevA.107.022402 (2023).
  42. Slattery, L. et al. Numerical evidence against advantage with quantum fidelity kernels on classical data. \JournalTitlePhys. Rev. A 107, 062417, DOI: 10.1103/PhysRevA.107.062417 (2023).
  43. Havlíček, V. et al. Supervised learning with quantum-enhanced feature spaces. \JournalTitleNature 567, 209–212, DOI: 10.1038/s41586-019-0980-2 (2019).
  44. Data re-uploading for a universal quantum classifier. \JournalTitleQuantum 4, 226, DOI: 10.22331/q-2020-02-06-226 (2020).
  45. Moreira, M. S. et al. Realization of a quantum neural network using repeat-until-success circuits in a superconducting quantum processor. \JournalTitlenpj Quantum Information 9, 118, DOI: 10.1038/s41534-023-00779-5 (2023).
  46. Quantum support vector machine for big data classification. \JournalTitlePhys. Rev. Lett. 113, 130503, DOI: 10.1103/PhysRevLett.113.130503 (2014).
  47. Quantum embeddings for machine learning. \JournalTitlearXiv: 2001.03622 DOI: https://arxiv.org/abs/2001.03622 (2020).
  48. Peters, E. et al. Machine learning of high dimensional data on a noisy quantum processor. \JournalTitlenpj Quantum Information 7, 161, DOI: 10.1038/s41534-021-00498-9 (2021).
  49. Experimental quantum kernel trick with nuclear spins in a solid. \JournalTitlenpj Quantum Information 7, 94, DOI: 10.1038/s41534-021-00423-0 (2021).
  50. Universal expressiveness of variational quantum classifiers and quantum kernels for support vector machines. \JournalTitleNature Communications 14, 576, DOI: 10.1038/s41467-023-36144-5 (2023).
  51. Quantum-classical hybrid machine learning for image classification (iccad special session paper), DOI: 10.1109/ICCAD51958.2021.9643516 (2021).
  52. Trochun, Y. et al. Hybrid classic-quantum neural networks for image classification. In 2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), vol. 2, 968–972, DOI: 10.1109/IDAACS53288.2021.9661011 (2021).
  53. Nakaji, K. et al. Approximate amplitude encoding in shallow parameterized quantum circuits and its application to financial market indicators. \JournalTitlePhys. Rev. Res. 4, 023136, DOI: 10.1103/PhysRevResearch.4.023136 (2022).
  54. Medical image diagnosis based on adaptive hybrid quantum CNN. \JournalTitleBMC Medical Imaging 23, 126, DOI: 10.1186/s12880-023-01084-5 (2023).
  55. Variational quantum circuits for convolution and window-based image processing applications. \JournalTitleQuantum Science and Technology 8, 045004, DOI: 10.1088/2058-9565/ace378 (2023).
  56. Quantum machine learning: a review and case studies. \JournalTitleEntropy 25, 287, DOI: 10.3390/e25020287 (2023).
  57. Quantum data encoding: a comparative analysis of classical-to-quantum mapping techniques and their impact on machine learning accuracy. \JournalTitlearXiv: 2311.10375 DOI: https://arxiv.org/abs/2311.10375 (2023).
  58. Quantum-inspired low-rank stochastic regression with logarithmic dependence on the dimension. \JournalTitlearXiv: 1811.04909 (2018).
  59. Quantum-inspired sublinear classical algorithms for solving low-rank linear systems. \JournalTitlearXiv: 1811.04852 DOI: https://arxiv.org/abs/1811.04852 (2018).
  60. Quantum-inspired algorithms in practice. \JournalTitleQuantum 4, 307, DOI: https://doi.org/10.22331/q-2020-08-13-307 (2020).
  61. Tang, E. Quantum principal component analysis only achieves an exponential speedup because of its state preparation assumptions. \JournalTitlePhys. Rev. Lett. 127, 060503, DOI: 10.1103/PhysRevLett.127.060503 (2021).
  62. Quantum-inspired classification via efficient simulation of helstrom measurement. \JournalTitlearXiv: 2403.15308 DOI: https://arxiv.org/abs/2403.15308 (2024).
  63. Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum-Classical Algorithms. \JournalTitleAdvanced Quantum Technologies 2, 1900070, DOI: https://onlinelibrary.wiley.com/doi/abs/10.1002/qute.201900070 (2019).
  64. Circuit-centric quantum classifiers. \JournalTitlePhys. Rev. A 101, 032308, DOI: 10.1103/PhysRevA.101.032308 (2020).
  65. Expressive power of parametrized quantum circuits. \JournalTitlePhys. Rev. Res. 2, 033125, DOI: 10.1103/PhysRevResearch.2.033125 (2020).
  66. Randomness-Enhanced expressivity of quantum neural networks. \JournalTitlePhys. Rev. Lett. 132, 010602, DOI: 10.1103/PhysRevLett.132.010602 (2024).
  67. Barren plateaus in quantum neural network training landscapes. \JournalTitleNature Communications 9, 4812, DOI: 10.1038/s41467-018-07090-4 (2018).
  68. Connecting ansatz expressibility to gradient magnitudes and barren plateaus. \JournalTitlePRX Quantum 3, 010313, DOI: 10.1103/PRXQuantum.3.010313 (2022).
  69. MNIST handwritten digit database. \JournalTitleATT Labs 2, DOI: http://yann.lecun.com/exdb/mnist (2010).
  70. Quantum circuit design and analysis for database search applications. \JournalTitleIEEE Transactions on Circuits and Systems I: Regular Papers 54, 2552–2563, DOI: 10.1109/TCSI.2007.907845 (2007).
  71. Quantum circuit architecture search for variational quantum algorithms . \JournalTitlenpj Quantum Information 8, 62, DOI: 10.1038/s41534-022-00570-y (2022).
  72. Disentangling hype from practicality: on realistically achieving quantum advantage. \JournalTitlearXiv: 2307.00523 DOI: https://arxiv.org/abs/2307.00523 (2023).
  73. Crooks, G. E. Gradients of parameterized quantum gates using the parameter-shift rule and gate decomposition, DOI: https://arxiv.org/abs/1905.13311 (2019).
  74. Suzuki, Y. et al. Qulacs: a fast and versatile quantum circuit simulator for research purpose. \JournalTitleQuantum 5, 559, DOI: 10.22331/q-2021-10-06-559 (2021).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube