Quantum-inspired activation functions and quantum Chebyshev-polynomial network (2404.05901v3)
Abstract: Driven by the significant advantages offered by quantum computing, research in quantum machine learning has increased in recent years. While quantum speed-up has been demonstrated in some applications of quantum machine learning, a comprehensive understanding of its underlying mechanisms for improved performance remains elusive. Our study address this problem by investigating the functional expressibility of quantum circuits integrated within a convolutional neural network (CNN). Through numerical experiments on the MNIST, Fashion MNIST, and Letter datasets, our hybrid quantum-classical CNN model demonstrates superior feature selection capabilities and substantially reduces the required training steps compared to classical CNNs. Notably, we observe similar performance improvements when incorporating three other quantum-inspired activation functions in classical neural networks, indicating the benefits of adopting quantum-inspired activation functions. Additionally, we developed a hybrid quantum Chebyshev-polynomial network (QCPN) based on the properties of quantum activation functions. We demonstrate that a three-layer QCPN can approximate any continuous function, a feat not achievable by a standard three-layer classical neural network. Our findings suggest that quantum-inspired activation functions can reduce model depth while maintaining high learning capability, making them a promising approach for optimizing large-scale machine-learning models. We also outline future research directions for leveraging quantum advantages in machine learning, aiming to unlock further potential in this rapidly evolving field.
- Ladd, T. D. et al. Quantum computers. \JournalTitleNature 464, 45–53, DOI: 10.1038/nature08812 (201).
- Cao, Y. et al. Quantum Chemistry in the Age of Quantum Computing. \JournalTitleChemical Reviews 119, 10856–10915, DOI: 10.1021/acs.chemrev.8b00803 (2019).
- A rigorous and robust quantum speed-up in supervised machine learning. \JournalTitleNature Physics 17, 1013–1017, DOI: 10.1038/s41567-021-01287-z (2021).
- Complexity-Theoretic foundations of quantum supremacy experiments. \JournalTitlearXiv: 1612.05903 DOI: https://arxiv.org/abs/1612.05903 (2016).
- Minimally entangled state preparation of localized wave functions on quantum computers. \JournalTitlePhys. Rev. A 102, 012612, DOI: 10.1103/PhysRevA.102.012612 (2020).
- Niu, M. Y. et al. Entangling quantum generative adversarial networks. \JournalTitlePhys. Rev. Lett. 128, 220505, DOI: 10.1103/PhysRevLett.128.220505 (2022).
- O’Brien, J. L. Optical quantum computing. \JournalTitleScience 218, 1567–1570, DOI: 10.1126/science.1142892 (2007).
- Jerbi, S. et al. Quantum machine learning beyond kernel methods. \JournalTitleNature Communications 14, 517, DOI: 10.1038/s41467-023-36159-y (2023).
- Sood, S. K. & Pooja. Quantum computing review: a decade of research. \JournalTitleIEEE Transactions on Engineering Management 1–15, DOI: 10.1109/TEM.2023.3284689 (2023).
- Quantum kernel methods for solving regression problems and differential equations. \JournalTitlePhys. Rev. A 107, 032428, DOI: 10.1103/PhysRevA.107.032428 (2023).
- Kok, P. et al. Linear optical quantum computing with photonic qubits. \JournalTitleRev. Mod. Phys. 79, 135–174, DOI: 10.1103/RevModPhys.79.135 (2007).
- Barends, R. et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. \JournalTitleNature 508, 500–503, DOI: 10.1038/nature13171 (2014).
- High-Fidelity quantum logic gates using trapped-ion hyperfine qubits. \JournalTitlePhys. Rev. Lett. 117, 060504, DOI: 10.1103/PhysRevLett.117.060504 (2016).
- Georgescu, I. Trapped ion quantum computing turns 25, DOI: 10.1038/s42254-020-0189-1 (2020).
- Evered, S. J. et al. High-fidelity parallel entangling gates on a neutral-atom quantum computer. \JournalTitleNature 268–272, DOI: 10.1038/s41586-023-06481-y (2023).
- Arute, F. et al. Quantum supremacy using a programmable superconducting processor. \JournalTitleNature 574, 505–510, DOI: 10.1038/s41586-019-1666-5 (2019).
- Zhong, H.-S. et al. Quantum computational advantage using photons. \JournalTitleScience 370, 1460–1463, DOI: 10.1126/science.abe8770 (2020).
- Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum processor. \JournalTitleNature Communications 5, 4213, DOI: 10.1038/ncomms5213 (2014).
- O’Malley, P. J. J. et al. Scalable quantum simulation of molecular energies. \JournalTitlePhys. Rev. X 6, 031007, DOI: 10.1103/PhysRevX.6.031007 (2016).
- Kivlichan, I. D. et al. Quantum simulation of electronic structure with linear depth and connectivity. \JournalTitlePhys. Rev. Lett. 120, 110501, DOI: 10.1103/PhysRevLett.120.110501 (2018).
- Tubman, N. M. et al. Postponing the orthogonality catastrophe: efficient state preparation for electronic structure simulations on quantum devices, DOI: https://arxiv.org/abs/1809.05523 (2018).
- Ground-State preparation and energy estimation on early fault-tolerant quantum computers via quantum eigenvalue transformation of unitary matrices. \JournalTitlePRX Quantum 3, 040305, DOI: 10.1103/PRXQuantum.3.040305 (2022).
- Use VQE to calculate the ground energy of hydrogen molecules on IBM Quantum. \JournalTitlearXiv: 2305.06538 DOI: https://arxiv.org/abs/2305.06538 (2023).
- Faster variational quantum algorithms with quantum kernel-based surrogate models. \JournalTitleQuantum Science and Technology 8, 045016, DOI: 10.1088/2058-9565/aceb87 (2023).
- Hybrid quantum-classical approach to correlated materials. \JournalTitlePhys. Rev. X 6, 031045, DOI: 10.1103/PhysRevX.6.031045 (2016).
- Baker, T. E. Lanczos recursion on a quantum computer for the Green’s function and ground state. \JournalTitlePhys. Rev. A 103, 032404, DOI: 10.1103/PhysRevA.103.032404 (2021).
- Rizzo, J. et al. One-particle Green’s functions from the quantum equation of motion algorithm. \JournalTitlePhys. Rev. Res. 4, 043011, DOI: 10.1103/PhysRevResearch.4.043011 (2022).
- Detecting confined and deconfined spinons in dynamical quantum simulations. \JournalTitlePhys. Rev. Res. 4, 013193, DOI: 10.1103/PhysRevResearch.4.013193 (2022).
- Highly resolved spectral functions of two-dimensional systems with neural quantum states. \JournalTitlePhys. Rev. Lett. 131, 046501, DOI: 10.1103/PhysRevLett.131.046501 (2023).
- Farhi, E. et al. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. \JournalTitleScience 292, 472–475, DOI: 10.1126/science.1057726 (2001).
- Automatically Solving NP-Complete Problems on a Quantum Computer. In Proceedings of the 40th International Conference on Software Engineering: Companion Proceeedings, ICSE ’18, 258–259, DOI: 10.1145/3183440.3194959 (Association for Computing Machinery, 2018).
- Quantum superiority for verifying NP-complete problems with linear optics . \JournalTitlenpj Quantum Information 4, 56, DOI: 10.1038/s41534-018-0103-1 (2018).
- Experimental demonstration of quantum advantage for NP verification with limited information. \JournalTitleNature Communications 12, 850, DOI: 10.1038/s41467-021-21119-1 (2021).
- Zhang, A. et al. Quantum verification of NP problems with single photons and linear optics. \JournalTitleLight: Science & Applications 10, 169, DOI: 10.1038/s41377-021-00608-4 (2021).
- Biamonte, J. et al. Quantum machine learning. \JournalTitleNature 549, 195–202, DOI: 10.1038/nature23474 (2017).
- Ciliberto, C. et al. Quantum machine learning: a classical perspective. \JournalTitleProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474, 20170551, DOI: 10.1098/rspa.2017.0551 (2018).
- Schuld, M. Supervised quantum machine learning models are kernel methods. \JournalTitlearXiv: 2101.11020 DOI: https://arxiv.org/abs/2101.11020 (2021).
- Quantum classifier with tailored quantum kernel. \JournalTitlenpj Quantum Information 6, 41, DOI: 10.1038/s41534-020-0272-6 (2020).
- Quantum generative adversarial networks for learning and loading random distributions. \JournalTitlenpj Quantum Information 5, 103, DOI: https://www.nature.com/articles/s41534-019-0223-2 (2019).
- Huang, K. et al. Quantum generative adversarial networks with multiple superconducting qubits. \JournalTitlenpj Quantum Information 7, 165, DOI: 10.1038/s41534-021-00503-1 (2021).
- Kernel-based quantum regressor models learning non-Markovianity. \JournalTitlePhys. Rev. A 107, 022402, DOI: 10.1103/PhysRevA.107.022402 (2023).
- Slattery, L. et al. Numerical evidence against advantage with quantum fidelity kernels on classical data. \JournalTitlePhys. Rev. A 107, 062417, DOI: 10.1103/PhysRevA.107.062417 (2023).
- Havlíček, V. et al. Supervised learning with quantum-enhanced feature spaces. \JournalTitleNature 567, 209–212, DOI: 10.1038/s41586-019-0980-2 (2019).
- Data re-uploading for a universal quantum classifier. \JournalTitleQuantum 4, 226, DOI: 10.22331/q-2020-02-06-226 (2020).
- Moreira, M. S. et al. Realization of a quantum neural network using repeat-until-success circuits in a superconducting quantum processor. \JournalTitlenpj Quantum Information 9, 118, DOI: 10.1038/s41534-023-00779-5 (2023).
- Quantum support vector machine for big data classification. \JournalTitlePhys. Rev. Lett. 113, 130503, DOI: 10.1103/PhysRevLett.113.130503 (2014).
- Quantum embeddings for machine learning. \JournalTitlearXiv: 2001.03622 DOI: https://arxiv.org/abs/2001.03622 (2020).
- Peters, E. et al. Machine learning of high dimensional data on a noisy quantum processor. \JournalTitlenpj Quantum Information 7, 161, DOI: 10.1038/s41534-021-00498-9 (2021).
- Experimental quantum kernel trick with nuclear spins in a solid. \JournalTitlenpj Quantum Information 7, 94, DOI: 10.1038/s41534-021-00423-0 (2021).
- Universal expressiveness of variational quantum classifiers and quantum kernels for support vector machines. \JournalTitleNature Communications 14, 576, DOI: 10.1038/s41467-023-36144-5 (2023).
- Quantum-classical hybrid machine learning for image classification (iccad special session paper), DOI: 10.1109/ICCAD51958.2021.9643516 (2021).
- Trochun, Y. et al. Hybrid classic-quantum neural networks for image classification. In 2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), vol. 2, 968–972, DOI: 10.1109/IDAACS53288.2021.9661011 (2021).
- Nakaji, K. et al. Approximate amplitude encoding in shallow parameterized quantum circuits and its application to financial market indicators. \JournalTitlePhys. Rev. Res. 4, 023136, DOI: 10.1103/PhysRevResearch.4.023136 (2022).
- Medical image diagnosis based on adaptive hybrid quantum CNN. \JournalTitleBMC Medical Imaging 23, 126, DOI: 10.1186/s12880-023-01084-5 (2023).
- Variational quantum circuits for convolution and window-based image processing applications. \JournalTitleQuantum Science and Technology 8, 045004, DOI: 10.1088/2058-9565/ace378 (2023).
- Quantum machine learning: a review and case studies. \JournalTitleEntropy 25, 287, DOI: 10.3390/e25020287 (2023).
- Quantum data encoding: a comparative analysis of classical-to-quantum mapping techniques and their impact on machine learning accuracy. \JournalTitlearXiv: 2311.10375 DOI: https://arxiv.org/abs/2311.10375 (2023).
- Quantum-inspired low-rank stochastic regression with logarithmic dependence on the dimension. \JournalTitlearXiv: 1811.04909 (2018).
- Quantum-inspired sublinear classical algorithms for solving low-rank linear systems. \JournalTitlearXiv: 1811.04852 DOI: https://arxiv.org/abs/1811.04852 (2018).
- Quantum-inspired algorithms in practice. \JournalTitleQuantum 4, 307, DOI: https://doi.org/10.22331/q-2020-08-13-307 (2020).
- Tang, E. Quantum principal component analysis only achieves an exponential speedup because of its state preparation assumptions. \JournalTitlePhys. Rev. Lett. 127, 060503, DOI: 10.1103/PhysRevLett.127.060503 (2021).
- Quantum-inspired classification via efficient simulation of helstrom measurement. \JournalTitlearXiv: 2403.15308 DOI: https://arxiv.org/abs/2403.15308 (2024).
- Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum-Classical Algorithms. \JournalTitleAdvanced Quantum Technologies 2, 1900070, DOI: https://onlinelibrary.wiley.com/doi/abs/10.1002/qute.201900070 (2019).
- Circuit-centric quantum classifiers. \JournalTitlePhys. Rev. A 101, 032308, DOI: 10.1103/PhysRevA.101.032308 (2020).
- Expressive power of parametrized quantum circuits. \JournalTitlePhys. Rev. Res. 2, 033125, DOI: 10.1103/PhysRevResearch.2.033125 (2020).
- Randomness-Enhanced expressivity of quantum neural networks. \JournalTitlePhys. Rev. Lett. 132, 010602, DOI: 10.1103/PhysRevLett.132.010602 (2024).
- Barren plateaus in quantum neural network training landscapes. \JournalTitleNature Communications 9, 4812, DOI: 10.1038/s41467-018-07090-4 (2018).
- Connecting ansatz expressibility to gradient magnitudes and barren plateaus. \JournalTitlePRX Quantum 3, 010313, DOI: 10.1103/PRXQuantum.3.010313 (2022).
- MNIST handwritten digit database. \JournalTitleATT Labs 2, DOI: http://yann.lecun.com/exdb/mnist (2010).
- Quantum circuit design and analysis for database search applications. \JournalTitleIEEE Transactions on Circuits and Systems I: Regular Papers 54, 2552–2563, DOI: 10.1109/TCSI.2007.907845 (2007).
- Quantum circuit architecture search for variational quantum algorithms . \JournalTitlenpj Quantum Information 8, 62, DOI: 10.1038/s41534-022-00570-y (2022).
- Disentangling hype from practicality: on realistically achieving quantum advantage. \JournalTitlearXiv: 2307.00523 DOI: https://arxiv.org/abs/2307.00523 (2023).
- Crooks, G. E. Gradients of parameterized quantum gates using the parameter-shift rule and gate decomposition, DOI: https://arxiv.org/abs/1905.13311 (2019).
- Suzuki, Y. et al. Qulacs: a fast and versatile quantum circuit simulator for research purpose. \JournalTitleQuantum 5, 559, DOI: 10.22331/q-2021-10-06-559 (2021).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.