Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum convolutional neural network for classical data classification (2108.00661v2)

Published 2 Aug 2021 in quant-ph

Abstract: With the rapid advance of quantum machine learning, several proposals for the quantum-analogue of convolutional neural network (CNN) have emerged. In this work, we benchmark fully parameterized quantum convolutional neural networks (QCNNs) for classical data classification. In particular, we propose a quantum neural network model inspired by CNN that only uses two-qubit interactions throughout the entire algorithm. We investigate the performance of various QCNN models differentiated by structures of parameterized quantum circuits, quantum data encoding methods, classical data pre-processing methods, cost functions and optimizers on MNIST and Fashion MNIST datasets. In most instances, QCNN achieved excellent classification accuracy despite having a small number of free parameters. The QCNN models performed noticeably better than CNN models under the similar training conditions. Since the QCNN algorithm presented in this work utilizes fully parameterized and shallow-depth quantum circuits, it is suitable for Noisy Intermediate-Scale Quantum (NISQ) devices.

Summary

We haven't generated a summary for this paper yet.