Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

TunnElQNN: A Hybrid Quantum-classical Neural Network for Efficient Learning (2505.00933v1)

Published 2 May 2025 in cs.LG, physics.app-ph, and quant-ph

Abstract: Hybrid quantum-classical neural networks (HQCNNs) represent a promising frontier in machine learning, leveraging the complementary strengths of both models. In this work, we propose the development of TunnElQNN, a non-sequential architecture composed of alternating classical and quantum layers. Within the classical component, we employ the Tunnelling Diode Activation Function (TDAF), inspired by the I-V characteristics of quantum tunnelling. We evaluate the performance of this hybrid model on a synthetic dataset of interleaving half-circle for multi-class classification tasks with varying degrees of class overlap. The model is compared against a baseline hybrid architecture that uses the conventional ReLU activation function (ReLUQNN). Our results show that the TunnElQNN model consistently outperforms the ReLUQNN counterpart. Furthermore, we analyse the decision boundaries generated by TunnElQNN under different levels of class overlap and compare them to those produced by a neural network implementing TDAF within a fully classical architecture. These findings highlight the potential of integrating physics-inspired activation functions with quantum components to enhance the expressiveness and robustness of hybrid quantum-classical machine learning architectures.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube