Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Leveraging Intelligent Recommender system as a first step resilience measure -- A data-driven supply chain disruption response framework (2404.00306v2)

Published 30 Mar 2024 in cs.CE and cs.AI

Abstract: Interests in the value of digital technologies for its potential uses to increase supply chain resilience (SCRes) are increasing in light to the industry 4.0 and the global pandemic. Utilization of Recommender systems (RS) as a supply chain (SC) resilience measure is neglected although RS is a capable tool to enhance SC resilience from a reactive aspect. To address this problem, this research proposed a novel data-driven supply chain disruption response framework based on the intelligent recommender system techniques and validated the conceptual model through a practical use case. Results show that our framework can be implemented as an effective SC disruption mitigation measure in the very first response phrase and help SC participants get better reaction performance after the SC disruption.

Summary

We haven't generated a summary for this paper yet.