Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Model-based Multi-agent Framework to Enable an Agile Response to Supply Chain Disruptions (2207.03460v1)

Published 7 Jul 2022 in cs.MA, cs.SY, and eess.SY

Abstract: Due to the COVID-19 pandemic, the global supply chain is disrupted at an unprecedented scale under uncertain and unknown trends of labor shortage, high material prices, and changing travel or trade regulations. To stay competitive, enterprises desire agile and dynamic response strategies to quickly react to disruptions and recover supply-chain functions. Although both centralized and multi-agent approaches have been studied, their implementation requires prior knowledge of disruptions and agent-rule-based reasoning. In this paper, we introduce a model-based multi-agent framework that enables agent coordination and dynamic agent decision-making to respond to supply chain disruptions in an agile and effective manner. Through a small-scale simulated case study, we showcase the feasibility of the proposed approach under several disruption scenarios that affect a supply chain network differently, and analyze performance trade-offs between the proposed distributed and centralized methods.

Citations (4)

Summary

We haven't generated a summary for this paper yet.