Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beyond Embeddings: The Promise of Visual Table in Visual Reasoning (2403.18252v2)

Published 27 Mar 2024 in cs.CV, cs.AI, cs.CL, cs.LG, and cs.MM

Abstract: Visual representation learning has been a cornerstone in computer vision, involving typical forms such as visual embeddings, structural symbols, and text-based representations. Despite the success of CLIP-type visual embeddings, they often lack access to world knowledge critical for visual reasoning. In this work, we propose Visual Table, a novel form of visual representation tailored for visual reasoning. Visual tables are constructed as hierarchical descriptions of visual scenes, featuring a scene description and multiple object-centric descriptions covering categories, attributes, and knowledge. Thanks to the structural and textual formats, visual tables offer unique advantages over mere visual embeddings, such as interpretability and controllable editing. Furthermore, they deliver instance-level world knowledge and detailed attributes that are essential for visual reasoning. To create visual tables, we develop a generator trained on the dataset with collected, small-scale annotations. Extensive results on 11 visual reasoning benchmarks demonstrate that the generated visual tables significantly outperform previous structural and text-based representations. Moreover, they consistently enhance state-of-the-art multimodal LLMs across diverse benchmarks, showcasing their potential for advancing visual reasoning tasks. Our code is available at https://github.com/LaVi-Lab/Visual-Table.

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com