Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fill in the ____ (a Diffusion-based Image Inpainting Pipeline) (2403.16016v1)

Published 24 Mar 2024 in cs.CV and cs.AI

Abstract: Image inpainting is the process of taking an image and generating lost or intentionally occluded portions. Inpainting has countless applications including restoring previously damaged pictures, restoring the quality of images that have been degraded due to compression, and removing unwanted objects/text. Modern inpainting techniques have shown remarkable ability in generating sensible completions for images with mask occlusions. In our paper, an overview of the progress of inpainting techniques will be provided, along with identifying current leading approaches, focusing on their strengths and weaknesses. A critical gap in these existing models will be addressed, focusing on the ability to prompt and control what exactly is generated. We will additionally justify why we think this is the natural next progressive step that inpainting models must take, and provide multiple approaches to implementing this functionality. Finally, we will evaluate the results of our approaches by qualitatively checking whether they generate high-quality images that correctly inpaint regions with the objects that they are instructed to produce.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com