Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Model Construction for Convex-Constrained Derivative-Free Optimization (2403.14960v1)

Published 22 Mar 2024 in math.OC

Abstract: We develop a new approximation theory for linear and quadratic interpolation models, suitable for use in convex-constrained derivative-free optimization (DFO). Most existing model-based DFO methods for constrained problems assume the ability to construct sufficiently accurate approximations via interpolation, but the standard notions of accuracy (designed for unconstrained problems) may not be achievable by only sampling feasible points, and so may not give practical algorithms. This work extends the theory of convex-constrained linear interpolation developed in [Hough & Roberts, SIAM J. Optim, 32:4 (2022), pp. 2552-2579] to the case of linear regression models and underdetermined quadratic interpolation models.

Summary

We haven't generated a summary for this paper yet.