Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Derivative-Free Bound-Constrained Optimization for Solving Structured Problems with Surrogate Models (2202.12961v3)

Published 25 Feb 2022 in math.OC

Abstract: We propose and analyze a model-based derivative-free (DFO) algorithm for solving bound-constrained optimization problems where the objective function is the composition of a smooth function and a vector of black-box functions. We assume that the black-box functions are smooth and the evaluation of them is the computational bottleneck of the algorithm. The distinguishing feature of our algorithm is the use of approximate function values at interpolation points which can be obtained by an application-specific surrogate model that is cheap to evaluate. As an example, we consider the situation in which a sequence of related optimization problems is solved and present a regression-based approximation scheme that uses function values that were evaluated when solving prior problem instances. In addition, we propose and analyze a new algorithm for obtaining interpolation points that handles unrelaxable bound constraints. Our numerical results show that our algorithm outperforms a state-of-the-art DFO algorithm for solving a least-squares problem from a chemical engineering application when a history of black-box function evaluations is available.

Summary

We haven't generated a summary for this paper yet.