Papers
Topics
Authors
Recent
Search
2000 character limit reached

Complexity-stability relationships in competitive disordered dynamical systems

Published 16 Mar 2024 in cond-mat.stat-mech, cond-mat.dis-nn, and q-bio.PE | (2403.11014v3)

Abstract: Robert May famously used random matrix theory to predict that large, complex systems cannot admit stable fixed points. However, this general conclusion is not always supported by empirical observation: from cells to biomes, biological systems are large, complex, and often stable. In this paper, we revisit May's argument in light of recent developments in both ecology and random matrix theory. We focus on competitive systems, and, using a nonlinear generalization of the competitive Lotka-Volterra model, we show that there are, in fact, two kinds of complexity-stability relationships in disordered dynamical systems: if self-interactions grow faster with density than cross-interactions, complexity is destabilizing; but if cross-interactions grow faster than self-interactions, complexity is stabilizing.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.