Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Breakdown of random-matrix universality in persistent Lotka--Volterra communities (2202.09140v3)

Published 18 Feb 2022 in cond-mat.dis-nn and q-bio.PE

Abstract: The eigenvalue spectrum of a random matrix often only depends on the first and second moments of its elements, but not on the specific distribution from which they are drawn. The validity of this universality principle is often assumed without proof in applications. In this letter, we offer a pertinent counterexample in the context of the generalised Lotka--Volterra equations. Using dynamic mean-field theory, we derive the statistics of the interactions between species in an evolved ecological community. We then show that the full statistics of these interactions, beyond those of a Gaussian ensemble, are required to correctly predict the eigenvalue spectrum and therefore stability. Consequently, the universality principle fails in this system. We thus show that the eigenvalue spectra of random matrices can be used to deduce the stability of `feasible' ecological communities, but only if the emergent non-Gaussian statistics of the interactions between species are taken into account.

Citations (12)

Summary

We haven't generated a summary for this paper yet.